UIJRT » United International Journal for Research & Technology

Opto-Structural (XRD) Characterization of Locally Synthesized Barium Sulfate (BaSO4) Nanoparticles from an Aqueous Solution of Barium Chloride (BaCl2) and Sulfuric Acid (H2SO4)

S.C. Onuegbu and S.S. Oluyamo
Keywords: BaSO4, Band gap energy, Optical properties, XRD.

Cite ➜

Onuegbu, S.C. and Oluyamo, S.S., 2020. Opto-Structural (XRD) Characterization of Locally Synthesized Barium Sulfate (BaSO4) Nanoparticles from an Aqueous Solution of Barium Chloride (BaCl2) and Sulfuric Acid (H2SO4). United International Journal for Research & Technology (UIJRT), 2(2), pp.22-25.


The study investigated the optical and XRD structural properties of locally synthesized Barium sulphate BaSO2 nanoparticles from an aqueous solution of barium chloride (BaCl2) and sulfuric acid (H2SO4) at a constant PH value of 4.5.  The Optical and structural properties of any nanoparticles play a crucial role in substantiating the suitability of such materials in device applications.  Nano-crystalline materials with excellent optical quality can find applications in optoelectronics, and in other light dependent devices. In this study the synthetic barium sulphate (BaSO4) was prepared by mixing a solution of 0.5 M BaCl2 with diluted 30 ml of 0.5 M H2SO4 at a maintained PH value of 4.5.  The optical and structural properties of the locally prepared BaSO4 were characterized using UV-visible 1650 PC Shimadzu Ultraviolet spectrophotometer and GPC X-ray diffractometer respectively. The optical results reveal that the nanoparticle of BaSO4 is an indirect wide band gap with a value of 4.0 eV. The nanoparticle showed a high transparency in the visible region, and a well-defined characteristic in the UV regions; this however, indicates that the material can find potential applications in UV detecting devices. The XRD results revealed that BaSO4 nanoparticles are crystalline and exhibit the orthorhombic crystal structure. The details of the study are discussed.


  1. Marouf, A. Beniaiche, H. Guessas, and A. Azizi, ‘Morphological, structural and optical properties of ZnO thin films deposited by dip coating method’, Mater. Res., vol. 20, no. 1, pp. 88–95, 2017, doi: 10.1590/1980-5373-MR-2015-0751.
  2. Á. B. Sifontes et al., ‘Obtaining Highly Crystalline Barium Sulphate Nanoparticles via Chemical Precipitation and Quenching in Absence of Polymer Stabilizers’, vol. 2015, 2015.
  3. Liu et al., ‘Materials Science & Engineering C Enhancing effects of radiopaque agent BaSO 4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement’, Mater. Sci. Eng. C, vol. 116, no. 8, p. 110904, 2020, doi: 10.1016/j.msec.2020.110904.
  4. Á. Figyelmesi and B. Pukánszky, ‘Preparation and Characterization of Barium Sulfate Particles as Contrast Materials for Surgery’, no. September, pp. 57–64, 2008.
  5. Chen et al., ‘Journal of Petroleum Science and Engineering Experimental investigation and numerical modeling of barium sulfate deposition in porous media’, J. Pet. Sci. Eng., vol. 195, no. May, p. 107920, 2020, doi: 10.1016/j.petrol.2020.107920.
  6. G. Hadi, F. Lafta, A. Hashim, H. Hakim, and A. I. O. Al-zuheiry, ‘Study the Effect of Barium Sulphate on Optical Properties of Polyvinyl Alcohol (PVA)’, no. January, pp. 2–6, 2013, doi: 10.13189/ujms.2013.010207.
  7. Liu, X. Yang, G. Li, X. Huang, and C. Xue, ‘Shear controllable synthesis of barium sulfate particles using lobed inner cylinder Taylor-Couette flow reactor’, Adv. Powder Technol., no. January, 2020, doi: 10.1016/j.apt.2019.12.023.
  8. Nandakumar and P. Kurian, ‘Chemosynthesis of monodispersed porous BaSO 4 nano powder by polymeric template process and its characterisation’, Powder Technol., vol. 224, pp. 51–56, 2012, doi: 10.1016/j.powtec.2012.02.022.
  9. Manam and S. Das, ‘Characterization and TSL dosimetric properties of Mn doped BaSO 4 phosphor prepared by recrystallisation method’, vol. 489, pp. 84–90, 2010, doi: 10.1016/j.jallcom.2009.09.018.
  10. Qi, L., Ma, J., Cheng, H., & Zhao, Z. (1996). Preparation of BaSO4 nanoparticles in non-ionic w/o microemulsions: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 108(1), 117–126. Doi: 10.1016/0927-7757(95)03317-3
  11. Paytan, A., & Griffith, E. M. (2007). Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5-7), 687–705. doi:10.1016/j.dsr2.2007.01.007
  12. Monnin, C., Jeandel, C., Cattaldo, T., & Dehairs, F. (1999). The marine barite saturation state of the world’s oceans. Marine Chemistry, 65(3-4), 253–261. doi:10.1016/s0304-4203(99)00016-x
  13. Rushdi, A. I., McManus, J., & Collier, R. W. (2000). Marine barite and celestite saturation in seawater. Marine Chemistry, 69(1-2), 19–31. doi:10.1016/s0304-4203(99)00089-4
  14. Judat, B., & Kind, M. (2004). Morphology and internal structure of barium sulfate—derivation of a new growth mechanism. Journal of Colloid and Interface Science, 269(2), 341–353. doi:10.1016/j.jcis.2003.07.047
  15. Adityawarman, D., Voigt, A., Veit, P., & Sundmacher, K. (2005). Precipitation of BaSO4 nanoparticles in a non-ionic microemulsion: Identification of suitable control parameters. Chemical Engineering Science, 60(12), 3373–3381. doi:10.1016/j.ces.2004.12.050
  16. Church, T. M., & Wolgemuth, K. (1972). Marine barite saturation. Earth and Planetary Science Letters, 15(1), 35–44. doi:10.1016/0012-821x(72)90026-x
  17. Ramaswamy, V., M. Vimalathithan, R., & Ponnusamy, V. (2012). Synthesis Of Monodispersed Barium Sulphate Nanoparticles Using Water-benzene Mixed Solvent. Advanced Materials Letters, 3(1), 29–33. doi:10.5185/amlett.2011.4240
  18. Angham .G. Hadi, Farhan Lafta, Ahmed Hashim, Hussein Hakim, Abbas I. O. Al-zuheiry, Saba R. Salman, hind Ahmed, “Study the effect of Barium sulphate on optical properties of Polyvinyl Alcohol (PVA)”, Journal of material science 1 (2): 52-55, 2013, DOI: 10.13189/UJMS.2013.010207
Scroll to Top