UIJRT » United International Journal for Research & Technology

Molecular Characterization of Brassica Cultivars through RAPD Markers

S M Masiul Azam, Md Shahidul Islam, Parvin Shahanaz, Md Shafiqur Rahman and Sarder Md Shahriar Alam
Keywords: DNA fingerprinting, biotechnology, RAPD marker, inherent dissimilarity, mustard.

Cite ➜

Azam, S.M., Islam, M.S., Shahanaz, P., Rahman, M.S. and Alam, S.M.S., 2020. Molecular Characterization of Brassica Cultivars through RAPD Markers. United International Journal for Research & Technology (UIJRT), 1(5), pp.36-40.


This study intended to identify molecular characterization of Brassica through RAPD marker. The hereditary enhancement of Brassica cultivar is necessary for improved of yield and quality of various mustard varieties. Six Brassica cultivars have been used to assess inherent multiplicity and associations by PCR-based indiscriminate augmented Polymorphic DNA (RAPD) method. The available 6 varieties were BINAsarisha-4, BINAsarisha-5, Safal, Sampad, Rai-5, and Daulot. In this study, nine RAPD primers were used for assessment among them. 3 primers (OPA-02, OPB-01, and OPC-02) created 33 distinct polymorphic bands among 9. Different banding model generated by every primer with a standard of 11 score making bands. The primer OPA-02 formed an utmost quantity of the band (14) among 3 primers and the other 2 primers (OPB-01 and OPC-02) created 10 and 9 bands respectively. The cultivar Sampad (Brassica rapa L.) was very similar to Safal (Brassica campestris L.) with the lowest inherent space (0.0265). Sampad and Rai-5 (Brassica juncea, L.) showed the best hereditary remoteness (0.981). The findings will be helpful to take policy initiative for Brassica improvement program.


  1. Patel, B. K. Rajkumar, P. Parmar, R. Shah, and R. Krishnamurthy, “Assessment of genetic diversity in Colletotrichum falcatum Went accessions based on RAPD and ISSR markers,” J. Genet. Eng. Biotechnol., vol. 16, no. 1, pp. 153–159, 2018.
  2. Gupta, S. M. Zargar, M. Gupta, and S. K. Gupta, “Assessment of Genetic Variation in Indian Mustard (Brassica juncea L.) Using PCR Based Markers,” Mol. Plant Breed., vol. 5, no. 3, pp. 10–17, 2014.
  3. S. Islam, R. Proshad, M. Asadul Haque, F. Hoque, M. S. Hossin, and M. N. I. Sarker, “Assessment of heavy metals in foods around the industrial areas: Health hazard inference in Bangladesh,” Geocarto Int., vol. 33, no. 9, pp. 1016–1045, 2018.
  4. Nasrin, M. N. I. Sarker, and N. Huda, “Determinants of health care seeking behavior of pregnant slums dwellers in Bangladesh,” Med. Sci., vol. 23, no. 95, pp. 35–41, 2019.
  5. AIS, “Krishi Diary (In Bangla),” Khamarbari, Farmgate, Dhaka, Bangladesh, 2015.
  6. Wünsch and J. I. Hormaza, “Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers,” Euphytica, vol. 125, pp. 59–67, 2002.
  7. A. Ali, M. S. Islam, M. N. I. Sarker, and M. A. Bari, “Study on Biology of Red Pumpkin Beetle in Sweet Gourd Plants,” Int. J. Appl. Res. J., vol. 2, no. 1, pp. 1–4, 2015.
  8. Sukhjeet, K. S. Singh, and S. Abhishek, “Molecular characterization and cross infectivity of poty and begomo viruses associated with hot pepper (Capsicum annuum L) in Punjab (India),” Res. J. Biotechnol., vol. 13, no. 10, pp. 14–22, 2018.
  9. S. Islam, M. A. Ali, and M. N. I. Sarker, “Efficacy of medicinal plants against seed borne fungi of wheat seeds,” Int. J. Nat. Soc. Sci., vol. 2, no. 21, pp. 48–52, 2015.
  10. K. Haider, M. S. Islam, S. S. Islam, and M. N. I. Sarker, “Determination of crop coefficient for transplanted Aman rice,” Int. J. Nat. Soc. Sci., vol. 2, no. 23, pp. 34–40, 2015.
  11. Yonggang and K. Chuisi, “Molecular characterization and tissue expression of common tobacco (Nicotiana tabacum) cadmium resistance protein 10 and 12 genes,” Res. J. Biotechnol., vol. 13, no. 10, pp. 28–33, 2018.
  12. S. Islam, M. N. I. Sarker, and M. A. Ali, “Effect of seed borne fungi on germinating wheat seed and their treatment with chemicals,” Int. J. Nat. Soc. Sci., vol. 2, no. 21, pp. 28–32, 2015.
  13. N. I. Sarker, “Role of Banks on Agricultural Development in Bangladesh,” Int. J. Ecol. Dev. Res., vol. 1, no. 1, pp. 10–15, 2016.
  14. P. O, “Molecular studies and genetic diversity analysis in Brassica species using microsatellite and RAPD markers,” Anand Agricultural University, 2013.
  15. E. a. Moghaieb, E. H. K. Mohammed, and S. S. Youssief, “Genetic diversity among some canola cultivars as revealed by RAPD, SSR and AFLP analyses,” 3 Biotech, vol. 4, no. 4, pp. 403–410, Aug. 2014.
  16. Z.M.S. Prodhan, M. N. I. Sarker, A. Sultana, and M. S. Islam, “Knowledge,adoption and attitude on banana cultivation technology of the banana growers of Bangladesh,” Int. J. Hortic. Sci. Ornam. Plants, vol. 3, no. 1, pp. 47–52, Feb. 2017.
  17. S. Islam, M. S. Khanam, and M. N. I. Sarker, “Health risk assessment of metals transfer from soil to the edible part of some vegetables grown in Patuakhali province of Bangladesh,” Arch. Agric. Environ. Sci., vol. 3, no. 2, pp. 187–197, 2018.
  18. B. Santos, J. Nienhuis, P. Skroch, J. Tivang, and M. K. Slocum, “Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L . genotypes,” Theor. Appl. Genet., vol. 87, pp. 909–915, 1994.
  19. N. I. Sarker, M. Wu, B. Chanthamith, S. Yusufzada, D. Li, and J. Zhang, “Big Data Driven Smart Agriculture : Pathway for Sustainable Development,” in ICAIBD 2019, 2019, pp. 1–6.
  20. N. I. Sarker, M. S. Islam, M. A. Ali, M. S. Islam, M. A. Salam, and S. M. H. Mahmud, “Promoting digital agriculture through big data for sustainable farm management,” Int. J. Innov. Appl. Stud., vol. 25, no. 4, pp. 1235–1240, 2019.
  21. C. Kalita et al., “Comparative Evaluation of RAPD, ISSR and Anchored-SSR Markers,” J. Plant Biochem. Biotechnol., vol. 16, pp. 41–48, 2007.
  22. N. I. Sarker, M. A. Ali, M. S. Islam, and M. A. Bari, “Feeding Behavior and Food Preference of Red Pumpkin Beetle, Aulacophora Foveicollis,” Am. J. Plant Biol., vol. 1, no. 1, pp. 13–17, 2016.
  23. Dulson, L. S. Kott, and V. L. Ripley, “Efficacy of bulked DNA samples for RAPD DNA fingerprinting of genetically complex Brassica napus cultivars,” Euphytica, vol. 102, pp. 65–70, 1998.
  24. A. Astarini, J. A. Plummer, R. A. Lancaster, and G. Yan, “Fingerprinting of cauliflower cultivars using RAPD markers,” Aust. J. Agric. Res., vol. 55, pp. 117–124, 2004.
  25. Bortolini, M. D. Agnol, and M. T. Schifino-wittmann, “Molecular characterization of the USDA white clover (Trifolium repens L.) core collection by RAPD markers,” Genet. Resour. Crop Evol., vol. 53, pp. 1081–1087, 2006.
  26. L. Karihaloo, “DNA Fingerprinting Techniques for Plant Identification,” in Plant Biology and Biotechnology, vol. II, B. Bahadur et al., Ed. Springer India, 2015, pp. 205–221.
  27. Mikolajczyk, “Development and Practical Use of DNA Markers,” Adv. Bot. Res., vol. 45, no. 07, pp. 99–138, 2007.
  28. A. Mirbahar, G. S. Markhand, S. Khan, and A. A. Abul-Soad, “Molecular characterization of some Pakistani date palm (Phoenix dactylifera l.) cultivars by RAPD markers,” Pakistan J. Bot., vol. 46, no. 2, pp. 619–625, 2014.
  29. A. Rocha, L. V. Paiva, H. H. De Carvalho, and C. T. Guimarães, “Molecular characterization and genetic diversity of potato cultivars using SSR and RAPD markers,” Crop Breed. Appl. Biotechnol., vol. 10, pp. 204–210, 2010.
  30. Su, P. Li, J. Yang, G. Sui, and Y. Yu, “Development of cost-effective single nucleotide polymorphism marker assays for genetic diversity analysis in Brassica rapa,” Mol. Breed., vol. 38, no. 42, pp. 1–13, 2018.
  31. N. I. Sarker, M. Z. Rahman, Q. Cao, and Z. Xu, “Impact of small entrepreneurship on poverty alleviation and sustainable livelihood of street vendors,” Int. J. Innov. Appl. Stud., vol. 25, no. 4, pp. 1241–1254, 2019.
Scroll to Top