UIJRT » United International Journal for Research & Technology

The Mass Culture of the Freshwater Rotifers Brachionus Rubens Ehrenberg 1838 Using Different Algal Species Diets

Total Views / Downloads: 91 

Cite ➜

Oguta, C.O., 2020. The Mass Culture of the Freshwater Rotifers Brachionus Rubens Ehrenberg 1838 Using Different Algal Species Diets. United International Journal for Research & Technology (UIJRT), 1(4), pp.10-24.


The bottleneck of most inland freshwater aquaculture enterprises is in obtaining an adequate number of fingerlings, due to their high mortality at early life stages. Their successful production is hindered by many factors including an adequate supply of food at early larval stages. A study on the mass culture of freshwater rotifer species was conducted at the freshwater rotifers’ laboratory in Cần Thơ University’s College of Fisheries and Aquaculture. Brachionus rubens Ehrenberg 1838 were identified and inoculated in 30 identical Falcon cups of 50 ml at 5 female rotifers cup⁻1 in order to obtain cultures with sufficient rotifer density for the subsequent culture experiments. A feeding experiment to identify the algae diet that conferred the best culture performance was conducted. Four different feeding treatments involving monodiets of Nannochloropsis oculata, Chaetoceros calcitrans and Chlorella vulgaris algae species and additionally a mixture of the three algal species were run in a 7-day experiment period. 1.5 l of identical, transparent plastic bottles filled with 1 l of mineral bottle water were stocked at an initial density of 20 individual rotifers ml⁻1 were used in three triplicates. Water temperature and water pH were 26 ± 1 °C and 7.5 ± 1.5 respectively. The diet containing mixed algal species had significantly higher rotifer density and egg ratio on the 7th day. Blending microalgae species can enhance the culture performance of the freshwater rotifers B. rubens when compared to monospecific microalgae diets.

Keywords: Larviculture; Brachionus rubens; freshwater aquaculture; zooplankton; microalgae.


  1. Abou-Shanab, R.A.I., Singh, M., Rivera-Cruz, A., Power, G., Bagby-Moon, T., Das, K., 2016. Effect of Brachionus rubens on the growth characteristics of various species of microalgae. Electron. J. Biotechnol. 22, 68–74. https://doi.org/10.1016/j.ejbt.2016.06.005
  2. Ajah, P.O., 2008. Growth characteristics of the monogonont rotifer Asplanchna priodonta Gosse 1850 on three algae species. Turkish J. Fish. Aquat. Sci. 8, 275–282.
  3. Arak, G. V, Mokashe, S.S., 2015. Potential of Fresh Water Rotifer, B. calyciflorus as Live Feed. Int. J. Sci. Res. 4, 1403–1406.
  4. Arimoro, F.O., 2006. Culture of the freshwater rotifer, Brachionus calyciflorus, and its application in fish larviculture technology. African J. Biotechnol. 5, 536–541.
  5. Ashraf, M., Ullah, S., Rashid, T., Ayub, M., Bhatti, E.M., Naqvi, S.A., Javaid, M., 2010a. Optimization of indoor production of fresh water rotifer (Brachionus calyciflorus): A preliminary study. Int. J. Agric. Biol. J. Agric. Biol. 12, 719–723.
  6. Ashraf, M., Ullah, S., Rashid, T., Ayub, M., Bhatti, E.M., Naqvi, S.A., Javaid, M., 2010b. Optimization of Indoor culture of calyciflorus, b: Feeding Studies. Pakistan J. Nutr. 9, 582–588.
  7. Assefa, A., Abunna, F., 2018. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Hindawi Vet. Med. Int. 2018, 1–11. https://doi.org/10.1155/2018/5432497
  8. Bae, J.H., Hur, S.B., 2011. Selection of Suitable Species of Chlorella, Nannochloris, and Nannochloropsis in High- and Low-Temperature Seasons for Mass Culture of the Rotifer Brachionus plicatilis. Fish. Aquat. Sci. 14, 323–332.
  9. Ben-Amotz, A., Fishler, R., Schneller, A., 1987. Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Mar. Biol. 95, 31–36. https://doi.org/10.1007/BF00447482
  10. Béné, C., Barange, M., Subasinghe, R., 2015. Feeding 9 billion by 2050 – Putting fish back on the menu. Food Secur. 7, 261–274. https://doi.org/10.1007/s12571-015-0427-z
  11. Bengtson, D.A., 2018. Status of Marine Aquaculture in Relation to Live Prey: Past, Present and Future. Live Feed. Mar. Aquac. 2018, 1–16. https://doi.org/10.1002/9780470995143.ch1
  12. Bentoli, n.d. The 4 Biggest Trends Coming to Aquaculture in 2018 and Beyond [WWW Document]. URL https://www.bentoli.com/aquaculture-2018-trends/ (accessed 1.5.19).
  13. Birkou, M., Bokas, D., Aggelis, G., 2012. Improving fatty acid composition of lipids synthesized by Brachionus plicatilis in large scale experiments. JAOCS, J. Am. Oil Chem. Soc. 89, 2047–2055. https://doi.org/10.1007/s11746-012-2107-x
  14. Blaxter, J.H.S., Hempel, G., 1963. The Influence of Egg Size on Herring Larvae (Clupea harengus L.). ICES J. Mar. Sci. 28, 211–240. https://doi.org/10.1093/icesjms/28.2.211
  15. Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., Gatward, I., Corner, R., 2010. Aquaculture: Global status and trends. Philos. Trans. R. Soc. B Biol. Sci. 365, 2897–2912. https://doi.org/10.1098/rstb.2010.0170
  16. Brown, M.R., 1991. The amino-acid and sugar composition of 16 species. J. Exp. Bio. Ecol 145, 79–99.
  17. Brown, M.R., Mular, M., Miller, I., Farmer, C., Trenerry, C., 1999. The vitamin content of microalgae used in aquaculture. J. Appl. Phycol. 11, 247–255. https://doi.org/10.1023/A:1008075903578
  18. Cabrera, T., Bae, J.H., Bai, S.C., Hur, S.B., 2005. Comparison of the Nutritional Value of Chlorella ellipsoidea and Nannochloris oculata for Rotifers and Artemia Nauplii. J. Fish. Sci. Technol. 8, 201–206.
  19. Cahu, C., Zambonino-Infante, J., 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200, 161–180. https://doi.org/10.1016/S0044-8486(01)00699-8
  20. Chakraborty, R.D., Chakraborty, K., Radhakrishnan, E. V., 2007. Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. J. Agric. Food Chem. 55, 4043–4051. https://doi.org/10.1021/jf063654l
  21. Chesney, E.J., 2007. Copepods as Live Prey: A Review of Factors That Influence the Feeding Success of Marine Fish Larvae. Copepods Aquac., Wiley Online Books. https://doi.org/doi:10.1002/9780470277522.ch11
  22. Cho, S.H., Ji, S.C., Hur, S.B., Bae, J., Park, I.S., Song, Y.C., 2007. Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fish. Sci. 73, 1050–1056. https://doi.org/10.1111/j.1444-2906.2007.01435.x
  23. Chotiyaputta, C., Hirayama, K., 1978. Food selectivity of the rotifer Brachionus plicatilis feeding on phytoplankton. Mar. Biol. 45, 105–111. https://doi.org/10.1007/BF00390546
  24. Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., Del Borghi, M., 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 48, 1146–1151. https://doi.org/10.1016/j.cep.2009.03.006
  25. Coutteau, P., Sorgeloos, P., 1997. Manipulation of dietary lipids, fatty acids and vitamins in zooplankton cultures. Freshw. Biol. 38, 501–512. https://doi.org/10.1046/j.1365-2427.1997.00239.x
  26. Das, P., Mandal, S.C., Bhagabati, S., KAkhtar, M.S., Singh, S.K., 2012. Important live food organisms and their role in Aquaculture, in: Sukham, M. (Ed.), Frontiers in Aquaculture. Narendra Publishing House, pp. 69–86. https://doi.org/10.13140/RG.2.2.21105.07523
  27. DeMott, W.R., 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshw. Biol. 42, 263–274. https://doi.org/10.1046/j.1365-2427.1999.444494.x
  28. Dhert, P., Rombaut, G., Suantika, G., Sorgeloos, P., 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200, 129–146. https://doi.org/10.1016/S0044-8486(01)00697-4
  29. Dhont, J., Dierckens, K., Støttrup, J., Van Stappen, G., Wille, M., Sorgeloos, P., Dierkens, K., Støttrup, J., Van Stappen, G., Wille, M., Sorgeloos, P., 2013. Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture, in: Allan, G., Burnell, G. (Eds.), Advances in Aquaculture Hatchery Technology. Woodhead Publishing Limited, Cambridge, pp. 157–197. https://doi.org/10.1533/9780857097460.1.157
  30. Duffy, J.T., Epifanio, C.E., Cope, J.S., 1996. Effects of prey density on the growth and mortality of weakfish Cynoscion regalis (Bloch and Schneider) larvae: Experiments in field enclosures. J. Exp. Mar. Bio. Ecol. 202, 191–203. https://doi.org/10.1016/0022-0981(96)00034-2
  31. Ekelemu, J.K., 2015. Isolation and Mass Culture of Freshwater Rotifer (Brachionus calyciflorus) Using Different Organic Media. Int. J. Adv. Biol. Res. 5, 67–72.
  32. FAO, 2018. FAO Aquaculture Newsletter. FAO Newsl. April, 66.
  33. FAO, 2017. FAO Aquaculture Newsletter. Aquac. Newsl. No.56, 64.
  34. FAO, 2016. The State of World Fisheries and Aquaculture, Contributing to food security and nutrition for all, Food and Agriculture Organization of the United Nation. Rome, Italy.
  35. Faruque, M.. ., Ahmed, K.M., Quddus, M.M.., 2010. Use of Live Food and Artificial Diet Supply for the Growth and Survival of African Catfish (Clarias gariepinus) Larvae. World J. Zool. 5, 82–89.
  36. Fernandez-diaz, C., Pascual, E., Yufera, M., 1994. Feeding behaviour and prey size selection of gilthead seabream, Sparus aurata, larvae fed on inert and live food, Marine Biology. https://doi.org/10.1007/BF00349800
  37. Ferreira, M., Coutinho, P., Seixas, P., Fábregas, J., Otero, A., 2009. Enriching rotifers with ‘Premium’ microalgae, Nannochloropsis gaditana. Mar. Biotechnol. 11, 585–595. https://doi.org/10.1007/s10126-008-9174-x
  38. Ferreira, M., Maseda, A., Fábregas, J., Otero, A., 2008. Enriching rotifers with ‘premium’ microalgae. Isochrysis galbana clone T-ISO. Aquaculture 279, 126–130. https://doi.org/10.1016/j.aquaculture.2008.03.044
  39. Flores-Burgos, J., Sarma, S.S.., Nandini, S., 2005. Effect of Single Species or Mixed Algal (Chlorella vulgaris and Scenedesmus acutus) Diets on the Life Table Demography of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Acta Hydrochim. Hydrobiol. – ACTA Hydrochim HYDROBIOL 33, 614–621. https://doi.org/10.1002/aheh.200500602
  40. Flüchter, J., 1982. Substance essential for metamorphosis of fish larvae extracted from Artemia salina. Aquaculture 27, 83–85. https://doi.org/10.1016/0044-8486(82)90113-2
  41. Foley, J., 2019. The Future of Food [WWW Document]. Natl. Geogr. Soc. URL https://www.nationalgeographic.com/foodfeatures/feeding-9-billion/ (accessed 7.20.19).
  42. Fox, M.G., Flowers, D.D., 1990. Effect of Fish Density on Growth, Survival, and Food Consumption by Juvenile Walleyes in Rearing Ponds. Trans. Am. Fish. Soc. 119, 112–121. https://doi.org/10.1577/1548-8659(1990)119<0112:eofdog>2.3.co;2
  43. Froehlich, H.E., Gentry, R.R., Rust, M.B., Grimm, D., Halpern, S., 2017. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World. PLoS One 12, 1–18. https://doi.org/10.1371/journal.pone.0169281
  44. Fukusho, K., 1989. Biology and mass production of the rotifer Brachionus plicatilis. Int. J. Aquac. Fish. Technol. 1, 232–240.
  45. Garcia-Rodríguez, F.G., De La Cruz-Aguero, J., 2008. Fisheries and Aquatic Science. J. Fish. Aquat. Sci. 4, 186–193.
  46. Ghosh, S., Xavier, B., Edward, L.L., Dash, B., 2016. Live feed for marine finfish and shellfish culture, in: Ghosh, S. (Ed.), Training Manual on Live Feed for Marine Finfish and Shellfish Culture. pp. 1–14.
  47. Govoni, J.J., Boehlert, G.W., Watanabe, Y., 1989. The physiology of digestion in fish The physiology of digestion in fish larvae. Environinental Biol. Fishes 16, 59–77. https://doi.org/10.1007/BF00005160
  48. Graima, E.M., Belarbi, E.H., Acien Fernandez, F.., Medina, R.A., Christ, Y., 2003. Optical and photoluminescent properties of nanostructured hybrid films based on functional fullerenes and metal nanoparticles. Biotechnol. Adv. 20, 491–515. https://doi.org/10.1016/S0734-9750(02)00050-2
  49. Gwo, J.C., Chiu, J.Y., Chou, C.C., Cheng, H.Y., 2005. Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology 50, 338–343. https://doi.org/10.1016/j.cryobiol.2005.02.001
  50. Halbach, U., 1984. Population dynamics of rotifers and its consequences for ecotoxicology. Hydrobiologia 109, 79–96. https://doi.org/10.1007/BF00006300
  51. Hamre, K., Rønnestad, I., Boglione, C., Conceic, L.E.C., Yufera, M., Izquierdo, M., 2013. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev. Aquac. 5, 526–558. https://doi.org/10.1111/j.1753-5131.2012.01086.x
  52. Hamre, K., Srivastava, A., Rønnestad, I., Stoss, J., 2008. Several micronutrients in the rotifer Brachionus may not fulfil the nutritional requirements of marine fish larvae. Aquac. Nutr. 14, 51–60. https://doi.org/10.1111/j.1365-2095.2007.00504.x
  53. Havlik, I., Reardon, K.F., Ünal, M., Lindner, P., Prediger, A., Babitzky, A., Beutel, S., Scheper, T., 2013. Monitoring of microalgal cultivations with on-line, flow-through microscopy. Algal Res. 2, 253–257. https://doi.org/10.1016/j.algal.2013.04.001
  54. Heng, R.L., Pilon, L., 2014. Time-dependent radiation characteristics of Nannochloropsis oculata during batch culture. J. Quant. Spectrosc. Radiat. Transf. 144, 154–163. https://doi.org/10.1016/j.jqsrt.2014.04.008
  55. Hirayama, K., Maruyama, I., Maeda, T., 1989. Nutritional effect of freshwater Chlorella on growth of the rotifer Brachionus plicatilis. Hydrobiologia 186–187, 39–42. https://doi.org/10.1007/BF00048894
  56. Hossain, S., Shefat, T., 2018. Vaccines for Use in Finfish Aquaculture. Acta Sci. Pharm. Sci. 2, 15–19.
  57. Howell, B.R., 1974. Problems associated with the feeding of certain flatfish larvae. Inf. Técnicos 14, 109–116. https://doi.org/http://hdl.handle.net/10261/155478
  58. Hu, H., Xi, Y., 2008. Demographic parameters and mixis of three Brachionus angularis Gosse (Rotatoria) strains fed on different algae. Limnologica 38, 56–62. https://doi.org/10.1016/j.limno.2007.08.002
  59. Hung, L.T., Tam, B.M., Cacot, P., Lazard, J. érôme, 1999. Larval rearing of the Mekong catfish, Pangasius bocourti (Pangasiidae, Siluroidei): Substitution of Artemia nauplii with live and artificial feed. Aquat. Living Resour. 12, 229–232. https://doi.org/10.1016/S0990-7440(00)88473-9
  60. Hunter, R.J., 1980. The Feeding Behavior and Ecology of Marine Fish Larvae, Fish Behaviour and Its Use in the Capture and Culture of Fishes. ICLARM Conf. Proc. 5. Manila, Philippines.
  61. Hyppolite, A., Laleye, P., 2012. Survival and Growth of Clarias gariepinus and Heterobranchus longifilis Larvae Fed with Freshwater Zooplanckton.
  62. James, C.M., 1989. Production and Nutritional Quality of Two Small-Sized Strains of the Rotifer. J. World Aquac. Soc. 20, 261–267.
  63. Kandilian, R., Lee, E., Pilon, L., 2013. Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra. Bioresour. Technol. 137, 63–73.
  64. Kennari, A.A., Ahmadifard, N., Kapourchali, M.F., Seyfabadi, J., 2008. Effect of two microalgae concentrations on body size and egg size of the rotifer Brachionus calyciflorus. Biologia (Bratisl). 63, 407–411. https://doi.org/10.2478/s11756-008-0068-1
  65. Kobayashi, M., Msangi, S., Batka, M., 2015. Aquaculture Economics & Management Fish to 2030 : The Role and Opportunity for Aquaculture. https://doi.org/10.1080/13657305.2015.994240
  66. Korstad, J., Olsen, Y., Vadstein, O., 1989. Life history characteristics of Brachionus plicatilis (rotifera) fed different algae. Hydrobiologia 186–187, 43–50. https://doi.org/10.1007/BF00048895
  67. Krebs, C.J., 1973. Ecology: The Experimental Analysis of Distribution and Abundance, XF2006250296. Harper and Row, New York.
  68. Krienitz, L., Wirth, M., 2006. The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36, 204–210. https://doi.org/10.1016/j.limno.2006.05.002
  69. Lavens, P., Sorgeloos, P., 1996. Manual on the Production and Use of Live Food for Aquaculture, in: Lavens, P., Sorgeloos, P. (Eds.), General Culture Conditions FAO Fisheries Technical Paper 361. FAO, Rome, Italy, p. 295.
  70. Le, T.H., Tuan, N.A., Cacot, P., Lazard, J., 2002. Larval rearing of the Asian Catfish, Pangasius bocourti (Siluroidei, pangasiidae): Alternative feeds and weaning time. Aquaculture 212, 115–127. https://doi.org/10.1016/S0044-8486(01)00737-2
  71. Li, M.., Robinson, E.., 2015. Complete feeds intensive, in: Davis, D.A. (Ed.), Feed and Feeding Practices in Aquaculture. Elsevier Ltd., Cambridge, pp. 111–126. https://doi.org/10.1016/B978-0-08-100506-4.00004-0
  72. Loka, J., Philipose, K.K., Sonali, S.M., 2016. Effect of microalgal diets on filtration and ingestion rates of the rotifer Brachionus plicatilis. Indian J. Fish. 63, 75–79. https://doi.org/10.21077/ijf.2016.63.3.58554-10
  73. Low, C., Toledo, M.I., 2015. Assessment of the shelf life of Nannochloropsis oculata flocculates stored at different temperatures. Lat. Am. J. Aquat. Res. 43, 315–321. https://doi.org/10.3856/vol43-issue2-fulltext-7
  74. Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147, 245–255. https://doi.org/10.1007/BF00025750
  75. Lubzens, E., Gibson, O., Zmora, O., Sukenik, A., 1995. Potential advantages of frozen algae (Nannochloropsis) for rotifer (Brachionus plicatilis) culture. Aquaculture 133, 295–309. https://doi.org/10.1016/0044-8486(95)00010-Y
  76. Lubzens, E., Tandler, A., Minkoff, G., 1989. Rotifer as food in aquaculture. Hydrobiologia 186/187, 387–400. https://doi.org/10.1007/BF00048937
  77. Ma, Z., Qin, J.G., Hutchinson, W., Chen, B.N., 2013. Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities. Aquac. Nutr. 19, 523–534. https://doi.org/10.1111/anu.12004
  78. Maehre, H.K., Hamre, K., Elvevoll, E.O., 2013. Nutrient evaluation of rotifers and zooplankton: Feed for marine fish larvae. Aquac. Nutr. 19, 301–311. https://doi.org/10.1111/j.1365-2095.2012.00960.x
  79. Margulies, D., 1993. Assessment of the nutritional condition of larval and early juvenile tuna and Spanish mackerel (Pisces: Scombridae) in the Panamfi Bight. Mar. Biol. 115, 317–330.
  80. Marin, N., Lodeiros, C., Verginelli, R., 1994. Mass culture of microalgae and rotifer Brachionus plicatilis Cultivo de microalgas y el rotifero Brachionus plicatilis a gran escala. Acta Cient. Venez. 45, 226–230.
  81. Maruyama, I., Hirayama, K., 1993. The Culture of the Rotifer Brachionus plicutilis with Chlorella vulgaris Containing Vitamin BI2 in its Cells. J. World Aquac. Soc. 24, 194–198.
  82. McGee, M. V., 2016. Larval culture of Pangasius in Puerti Rico. Int. Aquafeed 26–29.
  83. Megaraja, S., Ghosh, S., Xavier, B., Sadhu, N., Mohn, M.M., 2016. Zooplanktons for marine finfis and shellfish, in: Ghosh, S. (Ed.), Training Manual On Live Feed for Marine Finfish and Shellfish Culture. Wiley Online, pp. 55–84.
  84. Merchie, G., 1996. Use of naupli and meta-naupli, in: Lavens, P., Sorgeloos, P. (Eds.), Manual on the Production and Use of Live Food for Aquaculture: FAO Technical Paper 361. Rome, Italy, pp. 1–19. https://doi.org/.1037//0033-2909.I26.1.78
  85. Mills, E.L., Sherman, R., Robson, D.S., 1989. Effect of Zooplankton Abundance and Body Size on Growth of Age-0 Yellow Perch (Perca flavescens) in Oneida Lake, New York, 1975–86. Can. J. Fish. Aquat. Sci. 46, 880–886. https://doi.org/doi:10.1139/f89-113
  86. Mims, S.D., Webster, C.D., Tidwell, J.H., Yancey, D.H., 1991. Fatty Acid Composition of Daphnia pulex Cultured by Two Different Methods. J. World Aquac. Soc. 22, 153–156. https://doi.org/10.1111/j.1749-7345.1991.tb00727.x
  87. Mondal, A., Aziz, A., Joysowal, M., Chirwatkar, B., 2018. Importance of Live Feed in Aquaculture. IJSRD – Int. J. Sci. Res. Dev. 6, 656–658.
  88. Muller-feuga, A., 2000. The role of microalgae in aquaculture : situation and trends. J. Appl. Phycol. 12, 527–534.
  89. Muller-Feuga, A., Robert, R., Cahu, C., Robin, J., Divanach, P., Robin, J., Muller-Feuga, A., Cahu, C., Robert, R., 2003. Uses of Microalgae in Aquaculture, in: Støttrup, J.G., Mcevoy, L.A. (Eds.), Live Feeds in Marine Aquaculture. Blackwell Publishing Company, pp. 253–299. https://doi.org/10.1002/9780470995143.ch7
  90. Munilla-Moran, R., Stark, J.R., Barbour, A., 1990. The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus). Aquaculture 88, 337–350. https://doi.org/10.1016/0044-8486(90)90159-K
  91. Murugesan, S., Sivasubramanian, V., Altaff, K., 2010. Nutritional evaluation and culture of freshwater live food organisms on Catla catla. J. algal biomass Util. 1, 82–103.
  92. Nadarajah, S., Flaaten, O., 2017. Global aquaculture growth and institutional quality. Mar. Policy 84, 142–151. https://doi.org/10.1016/j.marpol.2017.07.018
  93. New, M.B., 1999. Global aquaculture: Current trends and challenges for the 21st Century. World Aquac. 30, 8–13.
  94. Nour, A.A., 2004. Factors affecting swim-bladder inflation, survival and growth performance of Gilthead Seabream Sparus aurata larvae: (1) Rotifers Brachionus plicatilis Egypt. J. Aquat. Res. 30, 406–417.
  95. Odo, G.E., Agwu, J.E., Iyaji, F.O., Madu, J.C., Ossai, N.I., Allison, N.L., 2015. Mass production of rotifer (Brachionus calyciflorus) for aquaculture in south-eastern Nigeria. Int. J. Fish. Aquac. 7, 151–159. https://doi.org/10.5897/ijfa15.0497
  96. Oltra, R., Todolf, R., 1997. Effects of temperature , salinity and food level on the life history traits of the marine rotifer Synchaeta cecilia valenrina , n . subsp . J. Plankton Res. 19, 693–702.
  97. Özba, B., Göksan, T., Ak, İ., 2006. Brachionus plicatilis (Rotifer) Farkli Besin Ortamlarinda Büyümesi. Ege J. Fish. Aquat. Sci. 23, 279–282.
  98. Peña-Aguado, F., Nandini, S., Sarma, S.S.S., 2005. Differences in population growth of rotifers and cladocerans raised on algal diets supplemented with yeast. Limnologica 35, 298–303. https://doi.org/10.1016/j.limno.2005.08.002
  99. Phillips, B.F., Matsuda, H., 2011. A Global Review of Spiny Lobster Aquaculture, in: Fotedar, R., Phillips, B.F. (Eds.), Recent Advances and New Species in Aquaculture. John Wiley & Sons, pp. 22–84. https://doi.org/10.1002/9781444341775.ch2
  100. Planas, M., Marinas, I.D.I., Bouzas, M. De, 1989. Effects of diet on population development of the rotifer (Brachionus plicatilis) in culture. Helgolander Meeresuntersuchungen 181, 171–181.
  101. Rainuzzo, J.R., Reitan, K.I., Olsen, Y., 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture 115, 103–115. https://doi.org/10.1134/s1070363215060353
  102. Ranjan, R., Chinnibabu, B., Sadhu, N., 2016. Isolation and purification of digalactosyldiacylglycerols, in: CMFRI Manuel Customized Training Book. pp. 46–54. https://doi.org/10.1007/BF02272159
  103. Rapid Tables.com, 2019. Lumens to lux (lx) conversion calculator [WWW Document]. Online. URL https://www.rapidtables.com/calc/light/lumen-to-lux-calculator.html (accessed 5.14.19).
  104. Reitan, K.I., Rainuzzo, J.R., Øie, G., Olsen, Y., 1997. A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155, 207–221. https://doi.org/10.1016/S0044-8486(97)00118-X
  105. Renaud, S.M., Thinh, L., Lambrinidis, G., Parry, D.L., 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211, 195–214. https://doi.org/10.1016/S0044-8486(01)00875-4
  106. Riley, K., Overton, A., M. Binion, S., 2010. Prey size selection and growth dynamics of American shad larvae.
  107. Román Reyes, José Cristóbal López Monteón, C.J., Urreta, H.C., Dosta Monroy, M. del C., Gustavo Alejandro, R.M. de O., 2017. Population Growth and Protein and Energy Content of Proales Similis (Rotifera: Monogononta) Reared at Different Salinities. Turkish J. Fish. Aquat. Sci. 17, 767–775. https://doi.org/10.4194/1303-2712-v17
  108. Rónyai, A., Ruttkay, A., 1990. Growth and food utilization of wels fry (Silurus glanis) fed with Tubifex worms. Fish. Res. Insitute 5, 193–202.
  109. Rothhaupt, K., 1990. Differences feeding efficiencies of related rotifer closely species. Limnol. Ocean. 35, 16–23.
  110. Rothhaupt, K.O., 1990. Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnol. Ocean. 35, 24–32.
  111. Rottmann, R.W., Graves, J.S., Watson, C., Yanong, R.P.E., 2003. Culture Techniques of Moina: The Ideal Daphnia for Feeding to Freshwater Fish Fry, University of Florida IFAS Extension.
  112. Rust, M.B., Amos, K.H., Bagwill, A.L., Dickhoff, W.W., Lorenzo, M., Price, C.S., James, A.M.J., Rubino, M.C., 2014. Environmental Performance of Marine Net-Pen Aquaculture in the United States Environmental Performance of Marine Net-Pen Aquaculture in the United States. Fisheries 39, 508–524. https://doi.org/10.1080/03632415.2014.966818
  113. Salt, G.W., 1987. The components of feeding behavior in rotifers. Hydrobiologia 147, 271–281. https://doi.org/10.1007/BF00025754
  114. Santhosh, B., Anil, M.K., 2013. Zooplankton for marine fish larval feed, in: CMFRI Manuel Customized Training Book. pp. 55–75.
  115. Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., Tocher, D., 1999. Lipid nutrition of marine fish during early development: Current status and future directions. Aquaculture 179, 217–229. https://doi.org/10.1016/S0044-8486(99)00191-X
  116. Schipp, G.R., Bosmans, M.P., Marshall, A.J., 1999. A method for hatchery culture of tropical calanoid. Aquaculture 174, 81–88.
  117. Schlüter, M., 1980. Mass culture experiments with Brachionus rubens. Hydrobiologia 73, 45–50. https://doi.org/10.1007/BF00019423
  118. Schmidt, K., Jónasdóttir, S., 1997. Nutrional quality of two cyanobacteria: How rich is ‘poor’ food? (Marine Ecol. Prog. Ser. 151, 1–10.
  119. Segers, H., 1995. Nomenclatural consequences of some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313–314, 121–122. https://doi.org/10.1007/BF00025939
  120. Sharma, B.K., 2005. Rotifer communities of floodplain lakes of the Brahmaputra basin of lower Assam (N.E. India): Biodiversity, distribution and ecology. Hydrobiologia 533, 209–221. https://doi.org/10.1007/s10750-004-2489-3
  121. Sharma, B.K., 1998. Faunal Diversity in India: Rotifera, in: India, Z.S. of (Ed.), Faunal Diversity of India. ENVIS Centre. Calcutta, India, pp. 57–70.
  122. Sharma, B.K., 1996. Biodiversity of Freshwater Rotifera in India a status report. Proc. zool. Soc., 49, 73–85.
  123. Sharma, B.K., 1983. The Indian species of the genus Brachionus (Eurotatoria: Monogononta: Brachionidae). Hydrobiologia 104, 31–39. https://doi.org/10.1007/BF00045949
  124. Shields, R.J., 2001. Larviculture of marine finfish in Europe. Aquaculture 55–88. https://doi.org/10.1016/S0044-8486(01)00694-9
  125. Sorgeloos, P., Dhert, P., Candreva, P., 2001. Use of the brine shrimp, Artemia spp., in marine fish fish larviculture. Aquaculture 200, 147–159. https://doi.org/10.1016/S0044-8486(01)00698-6
  126. Sperfeld, E., Martin-Creuzburg, D., Wacker, A., 2012. Multiple resource limitation theory applied to herbivorous consumers: Liebig’s minimum rule vs. interactive co-limitation. Ecol. Lett. 15, 142–150. https://doi.org/10.1111/j.1461-0248.2011.01719.x
  127. Spinelli, J., 1979. Preparation of salmonid diets containing zooplankton and their effect on organoleptic properties of pen-reared salmonids, in: Halver, J.E., Tiews, K. (Eds.), Proceedings of the World Symposium on Finfish Nutrition and Fishfeed Technology. Heeneman, Hamburg, pp. 383–392.
  128. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96. https://doi.org/10.1263/jbb.101.87
  129. Støttrup, J., Lesley, M., 2003. Live Feeds in Marine Aquaculture, 1st ed, Aquaculture Nutrition. Wiley-Blackwell. https://doi.org/10.1111/j.1529-8817.2004.40504.x
  130. Štrojsová, M., Suga, K., Hagiwara, A., Vrba, J., 2009. Effect of food quantity and quality on population growth rate and digestive activity in the Euryhaline Rotifer Brachionus plicatilis MÜLLER. Int. Rev. Hydrobiol. 94, 706–719. https://doi.org/10.1002/iroh.200811138
  131. Suantika, G., Dhert, P., Sweetman, E., O’Brien, E., Sorgeloos, P., 2003. Technical and economical feasibility of a rotifer recirculation system. Aquaculture 227, 173–189. https://doi.org/10.1016/S0044-8486(03)00502-7
  132. Subagja, J., Slembrouck, J., Hung, L.T., Legendre, M., 1998. Analysis of precocious mortality of Pangasius hypophthalmus larvae (Siluriformes, Pangasiidae) during the larval rearing and proposition of appropriate treatments., in: Proceedings of the Mid-Term Meeting of the Catfish Asia Project. pp. 147–155.
  133. Sugumar, V., Munuswamy, N., 2006. Induction of population growth, mictic female production and body size by treatment of a synthetic GnRH analogue in the freshwater rotifer, Brachionus calyciflorus Aquaculture 258, 529–534. https://doi.org/10.1016/j.aquaculture.2006.03.034
  134. Sukenik, A., 1991. Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis (Eustigmatophyceae). Bioresour. Technol. 35, 263–269. https://doi.org/10.1016/0960-8524(91)90123-2
  135. Sukenik, A., Zmora, O., Carmeli, Y., 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition . Aquaculture 117, 313–326.
  136. Tacon, A.G.J., 1990. Standard Methods for the Nutrition and Feeding of Farmed Fish and Shrimp, Standard Methods for the Nutrition and Feeding of Farmed Fish and Shrimp. Argent Laboratories Press.
  137. The United Nations, 2017. United Nations Department of Public Information 405 East 42. UN Press release 9–12.
  138. Thépot, V., Mangott, A., Pirozzi, I., 2016. Rotifers enriched with a mixed algal diet promote survival, growth and development of barramundi larvae, Lates calcarifer (Bloch). Aquac. Reports 3, 147–158. https://doi.org/10.1016/j.aqrep.2016.02.003
  139. Timmermans, K.R., Davey, M.S., Wagt, B. Van Der, Snoek, J., Geider, R.J., Veldhuis, M.J.W., Gerringa, L.J.A., Baar, H.J.W. De, 2001. Co-limitation by iron and light of Chaetoceros brevis , C . dichaeta and. Mar. Ecol. Prog. Ser. 217, 287–297.
  140. Tocher, D.R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 41, 717–732. https://doi.org/10.1111/j.1365-2109.2008.02150.x
  141. Tomaselli, L., 2004. The Microalgae : With Reference to the Microalgal Cell, in: Richmond, A. (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science Ltd, Oxford, UK, pp. 146–167.
  142. Turner, J.T., 1984. The feeding ecology of some zooplankters that are important prey items of larval fish. NOAA Tech. Rep. NMFS 7, 28 p. https://doi.org/10.1111/j.1095-8649.2010.02805.x
  143. Tzovenis, I., Pauw, D.N., Sorgeloos, P., 2003. Optimisation of T-ISO biomass production rich in essential fatty acids I. Effect of different light regimes on growth and biomass production. Aquaculture 216, 203–222. https://doi.org/10.1016/s0044-8486(02)00375-7
  144. Tzovenis, Ioannis, Pauw, N. De, Sorgeloos, P., 2003. Optimisation of T-ISO biomass production rich in essential fatty acids II. Effect of different light regimes on the production of fatty acids. Aquaculture 216, 223–242.
  145. Vandergheynst, J.S., Guo, H.Y., Cheng, Y.S., Scher, H., 2013. Microorganism viability influences internal phase droplet size changes during storage in water-in-oil emulsions. Bioprocess Biosyst. Eng. 36, 1427–1434. https://doi.org/10.1007/s00449-013-0886-6
  146. Walne, P.R., 1970. Walne’s medium for algal cultures. Fish. Invest. 26, 1–62.
  147. Watanabe, T., Kitajima, C., Fujita, S., 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: A review. Aquaculture 34, 115–143. https://doi.org/10.1016/0044-8486(83)90296-X
  148. Watanabe, T., Oowa, F., Kitajima, C., Fujita, S., Yone, Y., 1979. Relationship between the dietary value of rotifers Brachionus plicatilis and their content of omega 3 highly unsaturated fatty acids. Nippon Suisan Gakkaishi 45, 883–890. https://doi.org/10.2331/suisan.45.883
  149. Welker, M.T., Pierce, C.L., Wahl, D.H., 2004. Growth and Survival of Larval Fishes: Roles of Competition and Zooplankton Abundance. Trans. Am. Fish. Soc. 123, 703–717. https://doi.org/10.1577/1548-8659(1994)123<0703:gasolf>2.3.co;2
  150. Whyte, J.N.C., Clarke, W.C., Ginther, N.G., Jensen, J.O.T., Townsend, L.D., 1994. Influence of composition of Brachionus plicatilis and Artemia on growth of larval sablefish (Anoplopoma fimbria Pallas). Aquaculture 119, 47–61. https://doi.org/10.1016/0044-8486(94)90443-X
  151. Whyte, J.N.C., Nagata, W.D., 1990. Carbohydrate and fatty acid composition of the rotifer, Brachionus plicatilis, fed monospecific diets of yeast or phytoplankton. Aquaculture 89, 263–272. https://doi.org/10.1016/0044-8486(90)90131-6
  152. Wikfors, G.H., Ohno, M., 2001. Impact of algal research in aquaculture. J. Phycol. 37, 968–974. https://doi.org/10.1046/j.1529-8817.2001.01136.x
  153. Xavier, B., Megarajan, S., Vamsi, B., 2016. Microalgae culture media and glass ware, in: CMFRI Manuel Customized Training Book. pp. 15–34.
  154. Yamamoto, M., Fujishita, M., Hirata, A., Kawano, S., 2004. Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 117, 257–264. https://doi.org/10.1007/s10265-004-0154-6
  155. Yoshimatsu, T., Hossain, M.A., 2014. Recent advances in the high-density rotifer culture. Aquacult. Int 22, 1587–1603. https://doi.org/10.1007/s10499-014-9767-5
  156. Yoshimura, K., Hagiwara, A., Yoshimatsu, T., Kitajima, C., 1996. Culture Technology of Marine Rotifers and the Implications for Intensive Culture of Marine Fish in Japan. Mar. Freshw. Res. 47, 217–222.
  157. Zhang, D.M., Yoshimatsu, T., Furuse, M., 2005. Effects of L-carnitine enrichment on the population growth, egg ratio and body size of the marine rotifer, Brachionus rotundiformis. Aquaculture 248, 51–57. https://doi.org/10.1016/j.aquaculture.2005.04.019

For Conference & Paper Publication​

UIJRT Publication - International Journal