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Abstract— This study explored how well two machine learning algorithms—Random Forest (RF) and Support Vector 
Machine (SVM)—performed in classifying the Pima Indians Diabetes Dataset, which is used to predict the likelihood of 
individuals developing diabetes. To ensure a fair and reliable comparison, both models were evaluated using 10-fold 
cross-validation. Their effectiveness was measured through key classification metrics: accuracy, precision, recall, and F1-
score. The results highlighted Random Forest as the more stable and reliable model, achieving an average accuracy of 
76.3% and consistently strong results across all folds. In contrast, while the SVM with a polynomial kernel delivered 
slightly better precision (74.57%), it fell short in terms of overall accuracy, recall, and F1-score when compared to 
Random Forest. Ultimately, Random Forest proved to be better at identifying true positive cases and handling variations 
in the data, making it a stronger candidate for classifying health-related datasets like this one. That said, with further 
tuning of its parameters, SVM still holds promise as a competitive alternative. 
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I. INTRODUCTION 
Classification techniques play a pivotal role in modern 
data science, enabling the categorization of data into 
predefined labels, particularly when dealing with 
complex or unlabeled datasets. In healthcare, 
classification models are especially valuable for 
diagnostic predictions and disease risk assessments. 
Among the most prominent machine learning 
algorithms used for classification tasks are Random 
Forest (RF) and Support Vector Machine (SVM), both 
known for their robustness and predictive power. 

RF is an ensemble learning method that builds multiple 
decision trees and merges their outcomes to improve 
classification accuracy and control overfitting. SVM, on 
the other hand, is a powerful supervised learning 
algorithm that works well in high-dimensional spaces by 
identifying optimal hyperplanes for data separation. 
These algorithms have been widely applied across 
domains, including finance, image recognition, and 
biomedical data analysis (Mishra et al., 2023). 

Despite the success of both algorithms, previous 
research reveals inconsistent findings regarding their 
comparative performance. For instance, Osisanwo et al. 
(2017) found that SVM outperformed other classifiers in 
terms of accuracy and precision. Conversely, studies by 
Tigga and Garg (2020) and Nahzat and Yağanoğlu 

(2021) concluded that RF produced better results, 
especially when dealing with imbalanced or noisy data. 

Meanwhile, Lyngdoh et al. (2022) applied both methods 
and found that neither consistently achieved top 
performance, indicating that algorithm efficacy may 
depend on dataset-specific characteristics. 

Such inconsistencies raise critical questions about the 
contextual factors influencing classification accuracy. 
Differences in feature selection, preprocessing 
techniques, parameter tuning, and dataset characteristics 
often lead to divergent outcomes (Arshad et al., 2023). 
Therefore, a head-to-head comparison of RF and SVM 
on a consistent dataset with standardized evaluation 
metrics is warranted. 

The Pima Indians Diabetes Database is a widely 
recognized benchmark dataset in the field of medical 
informatics. It comprises several relevant clinical 
features such as glucose level, insulin concentration, 
body mass index, and blood pressure, all of which are 
critical indicators of diabetes risk. Its broad usage in 
machine learning research makes it an ideal candidate 
for testing and comparing classification algorithms 
under uniform conditions (Alam et al., 2022). 

Given the contradictions in prior findings and the 
medical relevance of the Pima dataset, this study aims to 
rigorously evaluate and compare the performance of RF 
and SVM using standardized metrics such as accuracy, 
precision, recall, and F1-score. The findings will 
contribute to a clearer understanding of each algorithm’s 
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strengths and limitations in the context of health data 
classification, potentially guiding future applications in 
clinical decision support systems 

II. BRIEF LITERATURE REVIEW 
The classification of medical datasets, particularly those 
related to diabetes, has gained considerable attention 
due to the growing prevalence of the disease. Among 
widely used datasets, the Pima Indians Diabetes Dataset 
(PID) has become a standard benchmark for evaluating 
machine learning (ML) models in medical diagnosis 
tasks (Uddin et al., 2019). Two commonly applied 
classification algorithms in this context are Random 
Forest (RF) and Support Vector Machine (SVM). 

Random Forest, an ensemble-based method, is known 
for its robustness against overfitting, its capacity to 
handle high-dimensional data, and its interpretability via 
feature importance (Zhou et al., 2020). SVM, by 
contrast, is appreciated for its solid theoretical 
foundation and effectiveness in handling both linear and 
nonlinear classification problems using kernel functions 
(Sharma & Khanna, 2021). Comparative studies have 
demonstrated that both methods perform competitively 
on PID, but performance often depends on 
preprocessing steps and hyperparameter tuning. 

Several recent studies have examined the application of 
RF and SVM to PID. For instance, El-Jerjawi and Abu-
Naser (2018) reported higher accuracy using RF over 
SVM in their classification experiments, attributing the 
results to RF's ensemble strength. Conversely, Patel et 
al. (2021) demonstrated that SVM outperformed RF 
when the dataset was normalized and optimized using 
grid search. Feature selection also plays a crucial role in 
improving model accuracy. Techniques like Recursive 
Feature Elimination (RFE) and Principal Component 
Analysis (PCA) have shown to enhance both RF and 
SVM performance (Jain & Choudhary, 2022). 

Additionally, hybrid models combining RF or SVM 
with optimization algorithms like Genetic Algorithm 
(GA) and Particle Swarm Optimization (PSO) have been 
proposed to improve classification outcomes (Ahmed et 
al., 2022). These methods report modest increases in 
performance, suggesting that algorithmic enhancements 
may benefit both models similarly. 

Furthermore, deep learning methods are increasingly 
used as benchmarks, but RF and SVM remain highly 
relevant due to their simplicity, lower computational 
demands, and strong performance on structured tabular 
datasets like PID (Mohammad et al., 2020). When 
interpretability is prioritized, RF tends to be favored due 
to its model transparency (Hosseini et al., 2022). 

III. RESEARCH METHOD 
A. Data Collection Method 
The dataset used in this study was sourced from the Pima 
Indians Diabetes Database, which was downloaded from 
Kaggle on November 14, 2024. Kaggle is a well-known 
platform that offers a wide range of high-quality datasets 
frequently used in data science and machine learning 
research. This particular dataset was chosen because it 
closely aligns with the goals of the study—evaluating 
the effectiveness of classification algorithms in 
predicting medical conditions, specifically diabetes. 

The data collection process began with identifying a 
dataset that fit the scope and requirements of the 
research. After selecting the Pima Indians Diabetes 
Database, we carried out a thorough review to confirm 
that the dataset was complete and properly structured. 
This included checking the number of records, the 
availability of all required features, and ensuring the 
data was formatted correctly for machine learning tasks. 

The dataset contains 768 records, each representing a 
medical profile of a Pima Indian woman aged 21 or 
older. It includes eight input features such as glucose 
level, blood pressure, insulin level, and body mass 
index, along with one output label indicating whether 
the individual was diagnosed with diabetes. A 
breakdown of these attributes is provided in Table 1. 

The Pima Indians Diabetes Dataset includes a range of 
medical features that are commonly associated with 
diabetes risk, making it a valuable resource for 
predictive modelling in healthcare research.  

Each attribute in the dataset reflects a specific health 
indicator that can contribute to identifying the likelihood 
of diabetes in an individual. Below is a brief overview 
of these features and their clinical significance. 

Table 1. Attribute List in Dataset 

No Attribute Description 

1 Pregnancies Number of pregnancies 

2 Glucose Plasma glucose concentration 2 hours after an oral glucose tolerance test 
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3 Blood Pressure Diastolic blood pressure (mmHg) 

4 Skin Thickness Triceps skinfold thickness (mm) 

5 Insulin Serum insulin concentration 2 hours after glucose ingestion (µU/ml)  

6 BMI Body mass index (kg/m²) 

7 Diabetes Pedigree Function Family history function showing genetic likelihood of diabetes 

8 Age Age of the individual (years) 

9 Outcome Target variable (0 or 1) 

a. Pregnancies: This attribute records the number of 
times a woman has been pregnant. Studies have 
shown that women with a history of gestational 
diabetes are at a higher risk of developing type 2 
diabetes later in life (Rayanagoudar et al., 2016). 

b. Glucose: Refers to the plasma glucose 
concentration measured two hours after an oral 
glucose tolerance test. Elevated postprandial 
glucose levels are a strong indicator of impaired 
glucose metabolism and an early sign of diabetes 
(Tabák et al., 2012). 

c. Blood Pressure: This is the diastolic blood pressure 
recorded in millimeters of mercury (mmHg). 
Hypertension is commonly linked with insulin 
resistance and an increased risk of developing type 
2 diabetes (Cheung & Li, 2012). 

d. Skin Thickness: Measures the triceps skinfold 
thickness in millimeters. Abnormal skin thickness 
may indicate metabolic irregularities, including 
higher fat deposits and insulin resistance, 
particularly in younger patients (Asif, 2021). 

e. Insulin: Indicates the serum insulin level two hours 
after glucose ingestion. Both hypoinsulinemia and 
hyperinsulinemia are related to diabetes 
progression, depending on how the body responds 
to glucose intake (Pankow et al., 2015). 

f. Body Mass Index (BMI): A calculation based on 
weight and height (kg/m²). A BMI over 25 is 
considered overweight and significantly raises the 
risk of type 2 diabetes due to increased fat 
accumulation and insulin resistance (Al-Goblan et 
al., 2014). 

g. Diabetes Pedigree Function: A value indicating the 
strength of family history of diabetes. A higher 
pedigree score reflects a stronger genetic 
predisposition to the disease (Ali, 2013). 

h. Age: Records the participant’s age in years. The 

likelihood of developing type 2 diabetes increases 
significantly after the age of 45, making age an 
important non-modifiable risk factor (Zhuo et al., 
2014). 

The dataset comprises 768 entries, with two outcome 
classes: 268 individuals diagnosed with diabetes and 
500 without the condition. These attributes were 
specifically selected due to their well-established 
relevance in diabetes research, offering a comprehensive 
foundation for training machine learning models to 
predict disease onset accurately. 

B. Random Forest Modeling 
Random Forest (RF) is a powerful ensemble learning 
algorithm widely used for both classification and 
regression tasks. It operates by constructing a large 
number of decision trees during training and aggregating 
their outputs—using majority voting for classification or 
averaging for regression—to produce the final 
prediction. As introduced by Breiman (2001), each tree 
in a Random Forest is trained on a random subset of the 
dataset, and at each node, a random subset of features is 
selected to determine the best split. This process 
introduces randomness that reduces the correlation 
among trees, improving overall model diversity and 
minimizing the risk of overfitting. 

One of RF’s core strengths lies in its ability to combine 

the predictions of multiple relatively weak models 
(individual trees) into a single strong model. Its 
performance is largely influenced by two key factors: 
the strength of the individual trees and the degree of 
correlation between them. Less correlation and stronger 
individual learners result in better overall performance 
(Breiman, 2001). In addition, Random Forest is highly 
flexible and can manage high-dimensional data with 
many features. It also offers built-in tools to assess 
feature importance, which helps in understanding which 
input variables have the greatest influence on the 
predictions—a useful feature for many applied domains 
including healthcare and finance. 

In this study, RF modelling was conducted using the 
Random Forest Classifier module from the 
sklearn.ensemble package in Python's scikit-learn 
library. This implementation is well-suited for efficient 
and customizable training of Random Forest models. 
Key hyperparameters used during model development 
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included: n_estimators (number of trees in the forest), 
max_features (number of features to consider when 
looking for the best split), max_depth (maximum depth 
of each tree), min_samples_split (minimum number of 
samples required to split an internal node), and 
min_samples_leaf (minimum number of samples 
required to be at a leaf node). Tuning these parameters 
helped optimize model accuracy and generalizability for 
the dataset at hand. 

The number of trees was set to 100, as recommended by 
Breiman (2001), to produce a stable error estimate. For 
the number of random features selected at each node, 
this study used two configurations: 

 and , 

where M is the total number of features in the dataset. 

With , the value of  was calculated as follows: 

. 

Other parameters, such as max_depth, were left at their 
default value (none), meaning there was no limit on the 
depth of the trees. The min_samples_split was set to 2, 
so a node would split if it contained at least two samples, 
and min_samples_leaf was set to 1, meaning each leaf 
must contain at least one sample. 

The dataset was divided into 10 folds using 10-fold 
cross-validation. In each iteration, 9 folds were used for 
training, and the remaining fold was used for evaluation. 
This process was repeated until each fold was used as a 
test set once. The evaluation results from the 10 folds 
were averaged for each configuration of F. The best 
average evaluation result was used as the basis for 
further analysis, ensuring the selected configuration of F 
was most suitable for the dataset's characteristics. 

C. Support Vector Machine Modeling 
Support Vector Machine (SVM) is a machine learning 
algorithm designed to separate two classes using an 
optimal hyperplane that maximizes the margin between 
the classes. The optimal hyperplane is defined as: 

 

where  is the weight vector,  is the feature vector, 

and  is the bias. The optimal margin, which indicates 
the model's generalization to new data, is formulated as 
(Cortes & Vapnik, 1995) : 

 

For data that cannot be linearly separated, SVM uses a 
kernel function to map the data into a higher-
dimensional space, enabling linear separation in that 
space (Schölkopf & Smola, 2002). Some common 
kernel functions include: 

a.       Linear Kernel: 

 

b.       Polynomial Kernel: 

 

c.        Gaussian RBF Kernel: 

 

SVM model training in this study was conducted using 
the scikit-learn library through the SVC (Support Vector 
Classifier) class. The model was developed to evaluate 
three types of kernels: linear, polynomial, and Gaussian 
(RBF). 

Key parameters used in SVM model training included 
the C and Gamma parameters. The C parameter 
controlled the balance between the margin's width and 
classification errors on the training data. The default 
value for C was 1.0, which provided a good balance 
between model complexity and low classification error. 
Meanwhile, Gamma controlled the contribution of each 
data point in determining the decision boundary. The 
default value for Gamma was 'scale', which was 

computed as , where n_features was the 
number of features in the dataset. A higher Gamma 
value resulted in a more complex decision boundary, 
while a lower value simplified the model. 

The dataset was divided into 10 folds using 10-fold 
cross-validation. In each iteration, 9 folds were used for 
training, and one fold was used for testing. The training 
process involved selecting a kernel, and evaluation was 
conducted to measure the model's performance on the 
test fold. This process was repeated until each fold was 
used as a test set once. The performance of the three 
kernels was evaluated, and the kernel with the best 
average accuracy was selected for further analysis. This 
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ensured that the chosen kernel aligned with the dataset's 
characteristics, resulting in an optimal SVM model. 

D. Evaluation Metrics and Performance 
Measurement 
The performance evaluation of the classification models 
in this study, specifically Random Forest (RF) and 
Support Vector Machine (SVM), was conducted using 
four widely recognized metrics in machine learning: 
accuracy, precision, recall, and F1-score. These metrics 
were applied to assess the models' ability to classify 
unseen data effectively during the testing phase. The 
evaluation process was designed to provide a 
comprehensive analysis of the model’s performance. 

According to Tharwat (2021), the purpose of a 
classification algorithm is to learn from training data and 
predict class labels for unseen data during testing. 
However, testing errors cannot be directly estimated 
because the actual class labels for the testing samples are 
not known. To address this, a validation phase was used 
to evaluate the performance of the trained models. 
Validation methods play a crucial role in determining 
the classification accuracy and reliability of the 
constructed models. 

 
Figure 1. Confusion Matrix 2x2 

The evaluation was based on the confusion matrix 
(Figure 1), which is used to calculate key classification 
metrics. In binary classification, the positive class was 
represented as P, and the negative class as N. Predictions 
were categorized into four outcomes: True Positive 
(TP), False Negative (FN), True Negative (TN), and 
False Positive (FP). These outcomes provided the 
foundation for calculating the following metrics 
(Tharwat, 2021): 

a.     Accuracy: Accuracy measured the proportion of 
correctly classified samples to the total number of 
predictions. It was calculated as follow: 

 

b.     Precision: Precision quantified the proportion of 
correctly predicted positive samples out of all predicted 
positive samples. It was calculated as: 

 

c.     Recall, also referred to as sensitivity, measured the 
proportion of actual positive samples that the model 
correctly identified. It was calculated as: 

 

d.     The F1-score provided a balance between precision 
and recall by computing their harmonic mean, making it 
especially useful for imbalanced datasets. It was 
calculated as: 

 

These metrics were critical in evaluating the 
performance of the models, especially in scenarios 
where class imbalance might skew the results if 
accuracy alone was considered. 

E. Experimental Setup 
The dataset was divided into ten folds for cross-
validation. Each fold served as the testing data once, 
while the remaining nine folds were used for training. 
For the RF model, features were randomly selected 
based on predefined values (F = 1 and F = 4), and for the 
SVM model, three kernel types (linear, polynomial, and 
radial basis function) were tested. After training, the 
models were evaluated on the testing fold, and the 
metrics were calculated. This process was repeated for 
each fold, and the average metric values across the ten 
folds were computed to estimate overall model 
performance. 

The metrics were calculated for both algorithms under 
various parameter settings, allowing for a detailed 
comparison of their classification performance. This 
experimental design ensured that the evaluation process 
was robust and reliable. 

IV. ANALYSIS AND RESULTS 
A. Results of the Random Forest Algorithm 
Implementation 
The Random Forest model was tested using two 
configurations of the max_features parameter (F=1 and 
F=4) on the diabetes dataset, aiming to evaluate the 
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model's performance across different feature 
configurations. Each configuration was tested using 10-
fold cross-validation to ensure the stability of the results. 
The evaluation results showed that RF achieved a good 
accuracy, with an average accuracy of 76.3% for F=1 
and a slightly lower accuracy of 75.9% for F=4. 

Moreover, RF also showed precision values of 70.22% 
for F=1, while for F=4, it slightly decreased to 68.1%. 
The recall for F=1 was recorded at 56.71%, indicating 
that a significant number of positive samples were not 
detected. However, using F=4, the recall slightly 
increased to 58.6%, although the precision slightly 
decreased. A detailed evaluation of the results is shown 
in the following Table 2. 

Table 2. Random Forest Model Evaluation Result 

 

From the table above, we can see that Random Forest 
with the F=1 configuration provides more stable results, 
with higher accuracy compared to F=4. However, 
despite F=4 slightly decreasing the accuracy, there are 
small differences in recall and precision that should be 
considered. 

Overall, Random Forest demonstrates stable results and 
performs better in terms of accuracy compared to other 
models. The F=1 configuration seems to provide more 
optimal performance, as evidenced by its better 
precision and F1-score compared to F=4. 

B. Results of the Support Vector Machine Algorithm 
Implementation 
The SVM algorithm was tested using three types of 
kernels: linear, polynomial, and RBF Gaussian. Each 

kernel was tested with 10-fold cross-validation and 
evaluated using the same metrics as RF: accuracy, 
precision, recall, and F1-score. 

a. Linear Kernel 
For the linear kernel, the SVM model achieved an 
average accuracy of 74.19%, with a precision of 70.78% 
and a lower recall of 56.34%.  

This indicates that while the model performed well in 
classifying positive samples, a significant number of 
samples were missed as negatives.  

The F1-score for the linear kernel was 62.28%, showing 
that the model achieved a balanced performance in terms 
of precision and recall. The results from the linear kernel 
evaluation are shown in Table 3. 

Table 3. SVM Model Evaluation Results with Linear Kernel 
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b. Polynomial Kernel 
The polynomial kernel achieved the highest average 
accuracy among the kernels, with a value of 76.04%. 
However, despite its higher accuracy, the polynomial 
kernel showed a lower recall of 46.27%, meaning the 
model frequently failed to detect patients who truly 

suffered from diabetes. Precision for the polynomial 
kernel was recorded at 74.57%, which is relatively high. 
The average F1-score for the polynomial kernel was 
56.46%, reflecting a less optimal balance between 
precision and recall. The results of the polynomial 
kernel evaluation can be seen in Table 4. 

Table 4. SVM Model Evaluation Result with Polynomial Kernel 

 

c. RBF Gaussian Kernel 
The RBF Gaussian kernel achieved an average accuracy 
of 75.78%, with good precision at 73.42%. However, the 
recall for this kernel only reached 47.70%, indicating 

that the model also struggled to detect all positive cases. 
The F1-score was recorded at 57.19%, showing a 
balance between precision and recall, though many 
positive samples were still missed. The results of the 
RBF Gaussian kernel evaluation are shown in Table 5. 

Table 5. SVM Model Evaluation Result with RBF Kernel 

 

From the evaluation results, the polynomial kernel 
showed the highest accuracy among the three kernels, 
with an average value of 76.04%, slightly better than 
both the linear and RBF Gaussian kernels. The 
polynomial kernel proved effective for handling more 
complex datasets, as it captured non-linear patterns 
better than the linear kernel. However, the polynomial 
kernel had a lower recall (46.27%) compared to the 
others, indicating that the model struggled to detect all 
positive cases. This suggests that despite the higher 

accuracy, the polynomial kernel missed several positive 
cases that should have been detected. 

d. Comparison of Best Evaluation Results from Each 
Algorithm 
A comparison between the Random Forest and Support 
Vector Machine models reveals that both have their own 
strengths and weaknesses. The comparison results can 
be seen in Table 6 below. 
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Table 6. Comparison of Random Forest and Support Vector Machine Evaluation Results 

 

Based on the results, Random Forest (RF) consistently 
showed more stable and reliable performance, achieving 
an average accuracy of 76.3%. It balanced precision, 
recall, and F1-score well—especially in the F=1 
configuration—reaching its highest accuracy at 85.71% 
in the fifth fold. In contrast, Support Vector Machine 
(SVM) with a polynomial kernel, while comparable in 
accuracy (76.04%), struggled with recall, indicating it 
missed several positive cases. 

One key reason for SVM’s lower performance may be 

the lack of advanced data preprocessing in this study. A 
previous study by Nahzat and Yağanoğlu (2021) 

achieved 87% accuracy using the same dataset, largely 
due to more thorough data cleaning and transformation. 
They addressed zero values in key features (e.g., 
glucose, blood pressure) by replacing them with class-
based means or medians, treated them as missing values, 
and normalized the dataset—an essential step for SVM 
performance. These preprocessing steps were not 
included in the current study, potentially limiting the 
SVM’s ability to perform well. 

Another notable difference was in the data splitting 
approach. While Nahzat and Yağanoğlu (2021) used a 

70/30 train-test split, this study applied cross-validation, 
which may affect the comparability of the results, 
especially given the dataset’s relatively small size. 

The findings confirm that data preprocessing 
significantly influences algorithm performance. RF's 
ensemble approach makes it robust to outliers and 
inconsistent data, while SVM’s effectiveness is more 

dependent on clean, normalized inputs and appropriate 
kernel selection. The polynomial kernel used in this 
study did not perform as well without preprocessing, 
reinforcing the importance of tuning and preparation for 
SVM models. 

In summary, RF proved to be the more stable and 
reliable algorithm for classifying the Pima Indians 
Diabetes dataset under the given conditions. With better 
preprocessing, however, SVM could potentially close 
the performance gap or even outperform RF in certain 
scenarios. 

IV. CONCLUSION 
This study compared the performance of Random Forest 
(RF) and Support Vector Machine (SVM) in classifying 
the Pima Indians Diabetes dataset. Key findings include: 
a. RF showed slightly better performance, achieving 

76.3% accuracy compared to SVM with a 
polynomial kernel at 76.04%. RF also demonstrated 
greater consistency across folds, making it more 
reliable under data variability. 

b. SVM performed well with non-linear patterns but 
was highly sensitive to kernel parameters, leading 
to less stable results than RF. 

c. Preprocessing significantly impacts model 
performance. For example, Nahzat and 
Yağanoğlu’s (2021) study achieved 87% accuracy 

using extensive preprocessing, such as data 
normalization and handling invalid values, which 
was not applied here. 

d. RF outperformed SVM in recall and F1-score, 
indicating better detection of positive cases. 
Although SVM showed slightly higher precision, it 
came at the expense of missing more positives. 

e. RF is recommended for this dataset due to its 
robustness and effectiveness in handling class 
imbalance and variation. 

f. These results underscore the importance of 
preprocessing and algorithm selection. Future 
research should explore optimized preprocessing 
methods and hybrid models to leverage the 
strengths of both RF and SVM. 
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