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Abstract— Agriculture serves as the backbone of the Philippine economy, with its ability to sustain a growing global 
population reliant on effective resource management. To optimize resources such as fertilizers, pesticides, and area, 
researchers have employed Javadi Et. Al.'s Non-Dominated Sorting Genetic Algorithm-II-Grid-Based Crowding Distance 
Algorithm (NSGA-II-Gr). Resource allocation and optimization often involve multi-objective decision-making, requiring 
careful trade-offs among competing parameters. However, upon simulating in higher dimensions, it converges 
prematurely to suboptimal solutions. After several iterations, the population tends to be dominated by the 'best' solution, 
leading to premature convergence. This reduces the diversity of candidate solutions and increases the risk of converging 
to a local optimum, ultimately limiting the exploration of solutions. To address this issue, the researchers introduced a 
separate spreading mechanism where the mutation intensity decreases over generations. Initially, the mutation strength is 
high to ensure significant diversity while later in the process, it weakens to promote convergence. This enhancement 
successfully allowed the algorithm to first explore the solutions before converging. By effectively preventing premature 
convergence, the modified algorithm gains the ability to explore a broader range of potential solutions. This advancement 
is particularly valuable for optimizing crop yield and identifying the most effective combinations and trade-offs in 
agricultural resource management. 

Keywords— Grid-Based Crowding Distance, Non-dominated Sorting Genetic Algorithm-II (NSGA-II), Optimization, 
Resource Allocation, Agriculture. 

I. INTRODUCTION  
Agriculture is the backbone of the Philippine economy, 
the capacity to feed a growing world population depends 
on the capacity of food supplies in the future to satisfy 
food demands. According to the Food and Agriculture 
Organization of the United Nations (2022), around 
62.8% of crop producers reporting a drop in main crop 
price which causes crop loss or damage is the main 
production difficulty due to pests or hazards followed by 
plant disease and 35.8% of crop producers were 
expecting to harvest less for this cropping cycle in the 
Philippines. This leads not only to increased demand for 
food crops, but also to significantly increased demand 
for crops to feed livestock. Therefore, the Food and 
Agriculture Organization believes that ensuring food 

security will require global crop yields to increase by 
more than 70%. This study aims to enhance the Non-
Dominated Sorting Genetic Algorithm-II-Grid-based 
Crowding Distance Algorithm (NSGA-II-Gr) to 
optimize Rabi crop yield in high-dimensional multi-
objective optimization problems. NSGA-II-Gr 
addresses the limitations of traditional multi-objective 
optimization algorithms by introducing a grid-based 
crowding distance mechanism, which prioritizes 
solutions in sparse regions and improves diversity in the 
decision space. Also, the NSGA-II-Gr author suggested 
in their study to test it on higher dimensional problems. 
However, challenges such as premature convergence 
remain, particularly in complex or high-dimensional 
problems. 
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Premature convergence occurs when constant genetic 
parameters restrict the search space, leading to reduced 
performance and a lack of improvement after several 
iterations. In these cases, dominant solutions replicate 
excessively, reducing population diversity and resulting 
in suboptimal local solutions instead of global optima. 
Addressing this issue is crucial for ensuring the 
algorithm’s effectiveness in optimizing Rabi crop yield, 

where resource allocation involves multiple conflicting 
objectives, such as minimizing area, fertilizer, and 
pesticide use while maximizing yield. 

The goal of this study is to introduce a spreading 
mechanism to NSGA-II-Gr that prioritizes exploration 
in early generations while ensuring optimal solutions. 
This enhancement will allow the algorithm to maintain 
diversity throughout iterations while ensuring 
convergence to global optimal solutions. The 
mechanism will control the spread of solutions within 
the objective space, enabling the algorithm to navigate 
complex solution landscapes effectively. To evaluate the 
fitness of solutions, this study incorporates a random 
forest predictive model. The random forest model is 
trained on historical agricultural data to predict the yield 
of Rabi crops based on input variables such as area, 
fertilizer, and pesticide usage. By leveraging the 
predictive accuracy and robustness of the random forest 
algorithm, the fitness evaluation process becomes more 
reliable and grounded in real-world agricultural trends. 
The use of this predictive model ensures that the 

optimization process is closely aligned with realistic 
agricultural scenarios, improving the applicability of the 
proposed enhancements. By addressing the challenge of 
premature convergence and incorporating advanced 
optimization strategies, this study aims to enhance 
NSGA-II-Gr for agricultural applications. The resulting 
improvements will contribute to sustainable and 
efficient resource allocation practices, ultimately 
supporting the optimization of Rabi crop yields under 
real-world agricultural constraints.  

A. Statement of the Problem 
In the genetic operation, constant genetic parameters 
lead to a smaller moving space and poorer search 
performance during the iteration of the algorithm. 
Premature convergence is a common problem in the 
algorithm, where solutions stop improving after several 
generations. In complex search spaces, it becomes 
difficult for the algorithm to find better solutions with 
each iteration. As a result, the best solution from the 
current generation tends to duplicate itself through 
recombination, causing the population to become 
dominated by this solution. This leads to a reduction in 
diversity and the risk of converging to a local optimum 
rather than the global optimum. Consequently, it 
struggles to find global optimal solutions, especially in 
complex or high-dimensional problems, such as 
optimizing reservoir operations with multiple 
environmental objectives. 

 
Figure 1: shows the Hypervolume progression for crop ‘Wheat’, shows the algorithm converges prematurely to 

suboptimal solutions 
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Figure 2: shows the Hypervolume progression for crop ‘Potato, shows the algorithm converges prematurely to 

suboptimal solutions. 

The simulation results in figure 1 clearly demonstrate 
the algorithm’s tendency to converge prematurely, as 
shown by the stable hypervolume values from 
Generation 1 to 18. Initially, in Generation 1, the 
hypervolume was 0.7426574528111037, however this 
does not change until Generation 19, suggesting that the 
algorithm has converged to a local optimum. Despite 
continued iterations, the hypervolume remains 
unchanged, illustrating that the algorithm is unable to 
explore the objective space effectively. This stagnation 
indicates that the algorithm struggles to escape the local 
optima, failing to improve the solution further. The 
results highlight the importance of improving the 
algorithm’s ability to explore the solution space and 

avoid premature convergence, particularly in complex 
optimization problems. 

In Figure 2, The simulation demonstrates the drop of 
hypervolume from Generation 1 to Generation 2, and 
from there, the hypervolume does not improve in the 
later generations. The algorithm fails to explore 
solutions relative to the minimum and maximum values 
of the dataset. The hypervolume indicates the algorithm 
only focuses on a local optimum which results in 
possible sub-optimal solutions.  

B. Objective of the Study 
The objective of the study is to enhance the NSGA-II-
Grid-based Crowding Distance Algorithm (NSGA-II-
Gr) for resource allocation, specifically tailored for 
optimizing Rabi crop yield in high-dimensional multi-
objective optimization problems. 

Specifically, the study aims to accomplish the 
following: 

1. To enhance the algorithm to effectively explore the 
objective space, while also enabling it to converge to 
optimal solutions by controlling the spread intensity of 
solutions as generations progress 

II. METHODOLOGY 
A. Study Area and Data Collection 
The dataset used for this study is from Kaggle, titled 
“Agricultural Crop Yield in Indian States Dataset”. This 

dataset encompasses agricultural data for multiple crops 
cultivated across various states in India from the year 
1997 till 2020. The dataset provides crucial features 
related to crop yield prediction, including crop types, 
crop years, cropping seasons, states, areas under 
cultivation, production quantities, annual rainfall, 
fertilizer usage, pesticide usage, and calculated yields. 

The researchers also trained the Random Forest 
Predictive Model for this study. This model is used to 
get the predicted yield given the area size, and the 
amount of fertilizer and pesticide. The input is the 
individual solution which has area, fertilizer, and 
pesticide. The output is the expected yield from that 
combination. This is then used to evaluate solutions and 
serves as the fitness evaluation function for the 
algorithm. For this study, two crops will be considered: 
Wheat and Potato. However, other crops from the 
dataset are tested as well but not shown in this paper 

B. Parameters 
 Grid Size = 20 

 Population Size = 100 

 Number of Generations = 50 

 Annual Rainfall = 1200 (Constant) 
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C. Objectives 
 Maximize Yield 

 Minimize Area 

 Minimize Fertilizer 

 Minimize Pesticide 

D. Decision Variables 
 Area 

 Pesticide 

 Fertilizer 

E. Metrics 
Hypervolume is a crucial performance metric in multi-
objective optimization, as it measures the volume of the 
objective space dominated by a set of solutions relative 
to a reference point. It evaluates both convergence 
(proximity to the Pareto front) and diversity (spread of 
solutions). A larger hypervolume indicates better 
optimization performance, as it reflects a broader and 
more optimal range of trade-offs between conflicting 
objectives. 

Hypervolume is an essential metric in multi-objective 
optimization, as it quantifies the objective space 
dominated by a set of solutions relative to a reference 
point, reflecting both convergence and diversity. The 
minimum and maximum values of the fields are used as 
reference points in this implementation.  

In this implementation, hypervolume is computed by 
first evaluating the population to obtain objective 
values, followed by dynamic min-max normalization of 
both the population and reference point to ensure 
comparability across objectives. Maximized objectives 
like yield are inverted for consistency with minimization 
objectives such as area, fertilizer, and pesticide. The 
normalized population and reference points are then 
used to calculate the dominated volume via a 
Hypervolume object, providing a robust measure of the 
algorithm's ability to explore and exploit the solution 
space effectively 

III. RESULTS AND DISCUSSION 

 
Figure 3: The result shows that the enhanced algorithm has performed better, especially in higher dimensional 

problems. In the figure, it has shown that the enhanced algorithm has better results for “wheat crops” 

 
Figure 4: The result shows that the enhanced algorithm has performed better, especially in higher dimensional 

problems. In the figure, it has shown that the enhanced algorithm has better results for “potato crops” 
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The simulation results in Figure 3 highlight the 
algorithm’s convergence behavior. Initially, the 

hypervolume starts at 0.3267 in Generation 1 and 
remains mostly stable until Generation 10, where it 
increases to 0.3910. A more significant improvement is 
observed in Generation 16, reaching 0.4834, followed 
by fluctuations before stabilizing around 0.6317 in 
Generations 28–30. The hypervolume continues to 
increase, peaking at 0.8091 from Generation 46 onward. 
This result shows that while the algorithm experiences 
periods of stagnation, it eventually escapes local optima 
and continues improving. 

In Figure 2, the simulation initially shows an increasing 
trend in hypervolume, rising from 0.2234 in Generation 
1 to 0.6606 in Generation 8. A notable improvement 
occurs in Generation 40, reaching 0.6329, followed by 
another increase to 0.7212 in Generations 46–49 before 
slightly declining in Generation 50. These results 
demonstrate the algorithm's ability to explore diverse 
solutions, as seen in the steady improvement in 
hypervolume across multiple generations. While some 
fluctuations occur, the algorithm successfully navigates 
through different regions of the solution space, 
ultimately achieving a peak hypervolume of 0.7212. 
This shows that the algorithm can escape local optima 
and identify high-quality solutions, showcasing its 
potential for effective optimization 

The enhanced algorithm opens the door for using 
NSGA-II-Gr in solving high-dimensional problems. The 
adaptive spreading mechanism gradually increases as 
the generations progress, allowing the algorithm to 
further mutate solutions aside from the built-in mutation 
function. This ensures the algorithm can explore more 
solutions. The initial algorithm, NSGA-II-Gr, only 
focused on bi-dimensional problems and was not 
applied in any real-world problems. In this study, the 
researchers wanted to explore the use of NSGA-II-Gr in 
high dimensional problems. Once simulated, the 
researchers found that the original algorithm suffers 
from premature convergence, where the solutions 
stagnate after a few generations and do not improve or 
change. Also, the original algorithm is not tailored for 
Rabi crop yield optimization. By implementing an 
adaptive spreading mechanism and combining a random 
forest model for fitness evaluation, the researchers 
addressed the mentioned issues. The resulting 
improvements will contribute to sustainable and 
efficient resource allocation practices, ultimately 
supporting the optimization of Rabi crop yields under 
real-world agricultural scenarios. 

IV. CONCLUSION 
The original NSGA-II-Gr algorithm was initially 
designed for bi-dimensional problems and was not 
adequately integrated into higher-dimensional 
problems, such as a 4-objective and 3-variable problem. 
This limitation often led to premature convergence into 
sub-optimal solutions. However, through the integration 
of key modifications, including a modified fitness 
evaluation process and an adaptive spreading 
mechanism, the enhanced NSGA-II-Gr algorithm 
demonstrated its effectiveness in addressing higher-
dimensional challenges. Specifically, these 
enhancements enabled successful applications to 
optimize Rabi crop yields using the provided dataset. 
The adaptive spreading mechanism effectively 
mitigated premature convergence, as evidenced by 
hypervolume improvements across generations, 
indicating sustained exploration of the objective space 
without stagnation. This robust exploration facilitated 
the discovery of truly optimal solutions. Furthermore, 
the incorporation of a Random Forest Predictive Model 
for fitness evaluation established a powerful synergy 
between genetic algorithms and machine learning, 
ensuring precise and realistic assessment of solutions 
based on the dataset. This synergy opens new avenues 
for research and application, paving the way for data-
driven, sustainable solutions in resource optimization 
and crop yield improvement. This expansion of NSGA-
II-Gr for higher-dimensional problems provides a 
versatile tool for researchers, farmers, and other users to 
optimize crop yields beyond bi-dimensional problems. 

V. RECOMMENDATIONS 
Future work could explore additional decision factors, 
such as annual rainfall, costs, market conditions, or 
specific attributes like fertilizer and pesticide brands, to 
further broaden the algorithm's applicability. Other crop 
types could also be tested in the enhanced algorithm. 
Additionally, experimenting with alternative fitness 
evaluation methods may help refine its performance and 
enhance its capacity to address increasingly complex 
optimization challenges. 
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