
41

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

Modifying JPS Algorithm Using Navmesh Data
Structure Applied in 3D Using Unity

Raymond Carlos S. Medina1, Hannah Shane B. Gittabao2, and Vivien A. Agustin3
1.2Student, Pamantasan ng Lungsod ng Maynila
3Adviser, Pamantasan ng Lungsod ng Maynila

Abstract— The JPS (Jump Point Search) algorithm is well-known for its efficiency and optimality in grid-based systems.
The algorithm works well with uniform-cost grids, but JPS can be slow for large environments due to the large search
space in 3D. The objective of this study is to overcome JPS's limitations in managing non-rectangular obstacles, varying
obstacle types, and larger maps. Utilizing the NavMesh data structure, the research methodology entails effectively
applying the JPS algorithm to non-grid maps and 3D environments. Techniques are developed to deal with variations in
altitude, diverse obstacles, and maximize memory usage. The performance of Unity's NavMesh is tested by comparing
computation time to the A* algorithm. The integration of JPS and NavMesh has the potential to enhance the speed,
obstacle recognition, and scalability of computer graphics applications, thereby benefiting game development and virtual
simulations.

Keywords— 3D– 3-Dimensional, JPS – Jump Point Search Algorithm, NavMesh - Navigation Mesh, Pathfinding,
Unity.

INTRODUCTION
Robotics and video games face pathfinding in grid
environments with consistent expense. Current
hierarchical pathfinding methods are fast and have low
memory, but they often yield wasteful pathways. Grid
maps are focal points in robotics, video games, and grid
maps due to their simplicity in representing
environments. Grids are academically interesting
because there are often many paths between any two
spots. These roadways are usually symmetrical,
differing only in movement order. [1]

Several algorithms discovered the shortest path on a
uniform-cost 2D mesh. A* optimizes breadth (Dijkstra)
and depth-first search. This technique has various
extensions, such as D*, HPA*, and Rectangular
Symmetry Reduction, which reduce the number of
nodes needed to identify the optimum path. [2]

Due to its efficiency in solving large-scale search
problems, the Jump Point Search (JPS) pathfinding
algorithm has gained popularity. JPS is a heuristic
algorithm that uses pruning criteria to narrow the search
area and focus on promising search network segments.

JPS improves search algorithms in robotics, video
games, and transportation planning. JPS's potential,
comparability to other path-searching algorithms, and
applicability to different problem areas need further
research.

JPS is known for its grid-based efficiency and
optimality. The JPS Algorithm uses Jump Points to
selectively expand grid map nodes while bypassing
intermediary nodes, reducing wasteful node exploration.
[3] A* takes short steps, whereas the JPS algorithm
uses "jumping" to efficiently traverse a grid by
considering larger straight-line motions along
horizontal, vertical, and diagonal axes. This method
optimizes A* while speeding up execution.

JPS on grids needs more variables and elements to
improve performance and simulate realistically.
Jumping off grid points is done for several reasons: It is
optimum, requires no preprocessing, has no memory
overhead, and can regularly speed up A* lookups by
more than 10x, making it competitive with HPA* and
often superior. [1]

While it was originally used in 2D grids, ongoing studies
about the algorithm being adapted to 3D exist. JPS
works in 3D contexts, however, more research is needed
to optimize its implementation. [4]

In both instances, however, the algorithm's primary
obstacle is the size of the map and its obstacles. The JPS
algorithm can be computationally expensive in
scenarios with a high number of obstacles. JPS search
times can be significantly lengthier than other
algorithms, such as A* and Dijkstra algorithm. The
authors hypothesize that this is due to the large number
of jump points generated by the algorithm in such

https://uijrt.com/

42

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

situations, which can prolong the pathfinding procedure.
[1][5]

The purpose of this paper was to propose enhancements
to the Jump Point Search (JPS) algorithm for computing
paths efficiently in the presence of various terrain and
elements and for improving its implementation in 3D.
The study examined how the JPS algorithm could be
modified to resolve the issues identified during the
process analysis phases. The effectiveness of the
proposed enhancements was compared to the A*
algorithm that is currently used with NavMesh using
small maps that were created with Unity.

However, there were some limitations to this study. The
proposed enhancements were only evaluated in three-
dimensional environments. In addition, JPS
optimization for other categories of obstacles, such as
moving obstacles or obstacles with sharp curves, was
not addressed in the research. In addition, the study
compared the proposed enhancements to a limited
number of benchmark maps. The proposed
enhancements were evaluated based on speed and
algorithm performance, but the impact of the proposed
enhancements on other parameters, such as memory
utilization or scalability, was not investigated.

RELATED WORKS
The JPS algorithm sometimes generates inefficient
pathways. The algorithm generates poor pathways in
lengthy, narrow corridors. According to the authors, the
algorithm's pruning criteria can prematurely terminate
searches in tight corridors, resulting in inferior
pathways. [1]

Several studies have been initiated to improve the
algorithm.

A study in 2019 presented a jump point search method
with safe distance (SD-JPS) for path planning to address
robot collision in complex situations due to control or
positioning error and robot size. A rapid jump point
search method-based jump point definition and node
domain matrix improve the JPS algorithm. The SD-JPS
approach can calculate the robot's safe distance from the
barrier and increase its movement freedom using any
size node domain matrix. It calculates multiple safety
distances and designs the best path faster. [6]

JPS has also been improved for optimal path-planning
for various purposes in multiple studies. "Global path

planning of mobile robot based on improved JPS+
algorithm" introduced Bidirectional JPS+, which
simultaneously searches for a path from the start and
goal nodes. In vast maps, this can speed up the search.
A safety feature prevents Bidirectional JPS+ from
hitting obstructions. The study compared Bidirectional
JPS+ to JPS and A*. Bidirectional JPS+ outperformed
the other two algorithms in speed, safety, and efficiency.
[7]

A recent study in 2022 introduced APF-JPS wherein key
nodes and path planning time are lowered compared to
the standard JPS technique, which ranks second in
overall performance, while the node usage rate climbs
by 23.4%. Thus, the APF-JPS method improves path
planning by reducing processing load, improving real-
time performance, and increasing the robot's endurance
time. [8]

They eventually proposed in their next study the 3D JPS
which solves low-altitude drone path planning and
autonomous obstacle avoidance problems. A virtual-
target gravity field and three-dimensional Bresenham's
line algorithm helped the drone avoid obstructions
between its starting and final positions. This study will
also address the need to optimize the dynamic-obstacle-
avoidance technique of the 3D JPS algorithm and reduce
calculation time to improve path quality and
computational efficiency. The researchers want to
improve the dynamic-obstacle-avoidance technique and
minimize the computation time of the 3D JPS algorithm
to increase path quality and computational efficiency.
[9]

The JPS Algorithm has also been developed in 3D
wherein it was called JPS-3D, a 3D-enhanced version of
the JPS algorithm. 3D path symmetry breaking finds and
expands jump points. Between jump locations, only
straight, 2D, or 3D diagonals can be taken. [10]

JPS-NavMesh Algorithm

JPS Algorithm
In 2011, Harabor and Grastien proposed the JPS
algorithm. The JPS algorithm's main goal is to improve
the A* algorithm's heuristic function by applying the
neighbor pruning rule and forced-neighbor judgment
method to the process of discovering subsequent path
nodes. The JPS algorithm significantly reduces the
number of nodes in the open list that must be accessed,
lowering the algorithm's time and space costs.

https://uijrt.com/

43

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

The following parts comprise the JPS algorithm:
(1) Pruning rules, which filter out and eradicate nodes
on the grid map that do not require expansion.
(2) Jumping rules, which identify and evaluate the jump
nodes in the grid map. [1]

The traditional JPS algorithm takes a start node and a
goal node as inputs and returns a path from the start to
the goal if one exists from a start node to a goal node. It
manages data structures like the open set, the closed set,
and the parent map. The algorithm starts by adding the
start node to the open set and initializing all other
required variables. The program then enters a loop that
proceeds until either a path is discovered, or the open set
becomes empty. In each iteration, the algorithm selects
the current node the open set node with the lowest cost.
If the current node is the target node, the algorithm
returns the path it constructs by following the parent
pointers from the target node to the start node.
Otherwise, the current node is designated as visited by
being added to the set of visited nodes. The algorithm
identifies successors of the current node by determining
forced neighbors and jump points using functions. These
successors are evaluated, and if a successor is not in the
open set or if its tentative cost is less than its current cost,
the algorithm updates the successor's parent and cost
values. This procedure is repeated until all successors
have been evaluated. If there is no path detected, the
algorithm will return null.[1]

NavMesh
NavMesh, also known as Navigational Mesh, is a
component of Unity's navigation and path finding
system. The navigation system allows you to construct
characters that can travel about the game world
intelligently by using navigation meshes generated
automatically from the Scene geometry. Dynamic
barriers allow to change the characters' path at runtime,
while off-mesh linkages allow to construct specialized
behaviors such as opening doors or jumping down from
a cliff. NavMesh is a data structure that defines the game
world's walkable surfaces and allows to identify a path
from one walkable area to another. The data structure is
generated automatically based on the level's
geometry.[11]

To consider a navigation, mesh successful, several
requirements must be met. These requirements include
the automatic generation of the mesh itself.
Additionally, the mesh should effectively exclude
obstacles, ensuri ng that they do not hinder the

pathfinding process. Another crucial requirement is the
ability to generate near-optimal paths between any two
points within the mesh. These paths should provide a
clear and efficient route from the starting position to the
desired goal position, represented as a list of points.
Meeting these requirements ensures the effectiveness
and usability of the navigation mesh for pathfinding
purposes. [12]

JPS-Navmesh Algorithm
The provided pseudo code below implements the
proposed JPS algorithm integrated into the NavMesh
Data Structure:

Figure 1. Psuedocode of Modified JPS-NavMesh

Algorithm

The modified algorithm begins by initializing data
structures such as the open set, closed set, and maps for
storing node costs and parent nodes. The algorithm then
enters a loop where it selects the node with the lowest
cost from the open set and checks if it is the goal node.
If not, the node is added to the closed set, and its
neighboring nodes are explored. For each neighbor, the
algorithm calculates a tentative cost from the start node
and updates the parent and cost if it is lower than the
existing value or the neighbor is not in the open set. This
process continues until either the goal node is reached,
in which case the path is constructed and returned, or the
open set becomes empty, indicating an unreachable

https://uijrt.com/

44

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

goal. The path construction involves tracing back
through the parent nodes. Using the JPS algorithm, the
code will, in theory, efficiently discover paths by
prioritizing nodes based on their costs and backtracking
through their parents.

The integration of NavMesh significantly alters the
pathfinding process in a few significant ways. Instead of
considering all adjacent nodes as potential successors,
NavMesh is used to identify valid successor nodes.
Using the connectivity and accessibility information
provided by the NavMesh, this enables the algorithm to
select nodes that are further away from the present node
but still in a relevant direction. This ensures that
successors align with the navigation mesh structure,
taking into account the geometry and connectivity of
non-rectangular obstacles.

Secondly, the jump function is enhanced by
incorporating NavMesh, allowing for the identification
of valid jump points. When attempting a jump in a
particular direction, the algorithm verifies the validity of
the next node using NavMesh. The algorithm recognizes
that there is no legitimate jump point in that direction if
the next node corresponds to a wall or obstacle. If the
next node is the goal or adjacent to a wall, however, it is
considered a valid jump point. NavMesh facilitates the

accurate identification of these jump sites by providing
precise obstacle representation and connectivity data.

Lastly, NavMesh has a significant impact on the pruning
procedure. Pruning, which entails selectively evaluating
nodes, is guided by the connectivity information derived
from NavMesh. Nodes are pruned horizontally,
vertically, and diagonally in accordance with
NavMesh’s recommendations. If it is determined that

evaluating the nodes adjacent to a specific node would
yield better results, the algorithm eliminates that node
and evaluates its neighbors instead. The NavMesh
functions as a guide for the pruning process, indicating
which areas should be further explored and which can
be skipped.

By integrating the NavMesh into the JPS algorithm, the
pathfinding process becomes more adept at
contemplating non-rectangular obstacles represented by
the NavMesh. This allows the algorithm to make
informed decisions regarding successor nodes, jump
points, and pruning, resulting in more accurate and
efficient pathfinding in environments with non-
rectangular obstacles.

METHODOLOGY
The proposed methodology involves several key steps.

Figure 2. Conceptual Framework of the JPS-NavMesh Algorithm

Firstly, the researchers will adapt the JPS algorithm to
utilize the NavMesh data structure, leveraging its
preprocessed walkable surface information and efficient
triangle-based navigation queries. This integration will
enable JPS to navigate complex 3D environments with
irregular shapes and varying obstacles.

Next, the researchers will focus on optimizing the JPS
algorithm's traversal and search techniques to take
advantage of the NavMesh representation. This includes
considering navigation constraints, such as obstacles
and restricted areas, to ensure accurate and efficient
pathfinding results.

https://uijrt.com/

45

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

The researchers utilized Unity as the primary application
for development. Unity is a versatile game development
platform with tools for creating interactive 2D and 3D
experiences. By employing Unity and following this
methodology, the project benefited from its tools, asset
store, and user-friendly interface to create an interactive
and visually appealing simulation.

Additionally, the researchers will explore techniques to
enhance the ground obstacles recognizability of the JPS
algorithm in the context of Unity's NavMesh.

Specifically, this includes:

1. Successor generation: Instead of considering all
adjacent nodes as successors, the NavMesh is utilized to
identify valid successor nodes. The NavMesh provides
information about the connectivity and accessibility of
polygons, enabling the algorithm to move to nodes that
are further away but still in the same relative direction
as the present node. This ensures that successors are
selected based on the navigation mesh structure,
considering the shape and connectivity of non-
rectangular obstacles into account.

2. Jump function: NavMesh is used to determine valid
jump coordinates, thereby enhancing the jump function.
When conducting a jump in a particular direction, the
algorithm verifies that the subsequent node is a valid
location according to NavMesh. The algorithm
determines there is no jump point in that direction if the
next node is a wall (obstacle). However, if the next node
is the target or adjacent to a wall, it is a valid jump point.
The NavMesh assists in identifying valid jump locations
by providing an accurate representation of obstacles and
connectivity data.

3. Pruning: Pruning is influenced by NavMesh
connectivity. Based on the NavMesh data, the algorithm

prunes nodes horizontally, vertically, and obliquely. If
the nodes adjacent to a specific node should be evaluated
instead, the algorithm removes that node and continues
with the evaluation of adjacent nodes. The NavMesh
directs the pruning process by indicating which areas
must be thoroughly investigated and which can be
skipped.

To validate the effectiveness of the proposed
methodology, the researchers will conduct a series of
tests and comparisons against the most used pathfinding
algorithm in Unity, which is the A*. Pathfinding time,
distance, and operation time will be considered to assess
the improvements achieved by the modified JPS
algorithm using NavMesh.

By integrating JPS with the NavMesh feature in Unity,
this research aims to provide a more efficient and
scalable pathfinding solution for complex 3D
environments. The outcomes of this research have the
potential to benefit various applications, including game
development, virtual simulations, and architectural
walkthroughs, by enabling faster and more accurate
pathfinding in Unity-based projects.

SIMULATION
Unity, a powerful 3D engine, and the programming
language C# were utilized during the implementation
and testing of the algorithms. The testing program
required importing a variety of 3D models that
represented the area and its challenges. The program
established the start and end points for testing at random
and conducted a predetermined number of tests,
although the specific behaviors depended on the selected
algorithm. It is essential to recognize that precise and
recurrent tests may be subject to limitations due to
background activities running in Windows 10. In each
instance, multiple test trials were conducted in an
attempt to overcome these limitations.

Table 1. Average Speed Results from Testing

MAP A* (A-B) A* (B-A) JPS (A-B) JPS (B-A)

Open Area 0.29005ms 0.01983 ms 1.52283 ms 0.00616 ms

Barnyard 0.29082 ms 0.02781 ms 1.6063 ms 0.00566 ms

Enclosure 0.2818 ms 0.02462 ms 1.52092 ms 0.00594 ms

50*50 Maze 1.90611 ms 1.23518 ms 1.47018 ms 0.00506 ms

50*50 Open Area 2.09586 ms 1.75482 ms 1.5254 ms 0.00588 ms

Table 1 presents the accumulated results of the average
speed of each algorithm from random point A to random
point B and backward.

On the First Environment initial test, A* did better than
JPS in terms of the amount of time it took to prepare the
way from point A to point B. Although A* was initially

https://uijrt.com/

46

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

speedier, JPS emerged victorious in the second test
where the path had to be retraced from point B to point
A.

The distinction resides in how A* and JPS approach
pathfinding. A* does not retain information regarding
previously processed paths. A* begins the preprocessing
phase from scratch for each new pathfinding request,
analyzing the complete graph or grid from the starting
node to the destination node. In contrast, JPS is capable
of recalling the paths it has traversed. JPS stores
information about jump points and the paths it has taken
once a path is discovered or a section of the map is
explored. This information can be used in subsequent
pathfinding queries within the same map, allowing JPS
to bypass previously explored regions and avoid
redundant calculations. This memory of previously
investigated paths significantly improves the
performance of JPS, especially when multiple paths
must be computed in the same environment.

In the second environment, the barnyard, both the A*
and JPS implementations took longer to finish than they
did in the first environment. The A* implementation
obtained the best preprocessing time in this test, with a
time of 0.29082 milliseconds. On the other hand, the JPS
implementation required 1.6063 milliseconds longer for
preprocessing. Interestingly, identical to the initial test,
JPS-Navmesh demonstrated superior performance when
retracing the steps from point B to point A. JPS
completed the backtracking process in 0.00566
milliseconds, substantially less than A*'s preprocessing
time of 0.02781 milliseconds. These results suggest that
the barnyard's scale, complexity, or layout may have
impacted the overall pathfinding performance. The A*
implementation was more effective at locating the initial
path from point A to point B, whereas the JPS algorithm
was superior at backtracking from point B to point A.

In the third environment, the goal was to find a target
that was hidden in a square with only one entrance. In
this scenario, the preprocessing durations for A* and
JPS differed. The preprocessing time for A* was 0.2818
milliseconds, while the preprocessing time for JPS was
1.52092 milliseconds. Similarly, to the prior tests, JPS
exhibited remarkable backtracking performance. It
completed the backtracking procedure in a very brief
0.005944444 milliseconds, whereas A* required a
slightly longer 0.024622222 milliseconds for
preprocessing. It is essential to observe that the
preprocessing times reported are unique to your tests

and the hidden target scenario's conditions. Pathfinding
performance can be affected by several variables,
including map layout, complexity, and implementation
specifics.

In the fourth setting, which was a big maze, JPS proved
to be the best algorithm for getting through it. JPS
accomplished a preprocessing time of 1.47018
milliseconds, whereas A* required 1.9061 milliseconds.
Even though A* had an extended preprocessing time for
the large maze, JPS performed exceptionally well in
navigating it.

Similar to previous experiments, JPS demonstrated its
effectiveness during the backtracking phase. It
completed the backtracking procedure in an
impressively quick 0.00506 milliseconds, whereas A*
required 1.23518 milliseconds for preprocessing.

These results demonstrate how proficiently JPS can
navigate complex environments, such as large mazes.
While A* may require more time for preprocessing in
such scenarios, JPS excels in both the initial pathfinding
and backtracking phases due to its ability to avoid
unnecessary node expansions and store path
information. It should be emphasized that the
preprocessing times indicated are unique to the large
maze environment in which your specific tests were
conducted. The effectiveness of pathfinding can vary
considerably based on a variety of factors, such as the
chosen implementation strategy, the complexity of the
maze, and the available computational resources.

In the fifth and final environment, JPS-Navmesh once
again showed how well it could move through large
areas with many obstacles and different terrain. It
completed preprocessing in 1.5254 milliseconds, while
A* required 2.095858 milliseconds to complete the
same task. Despite the extended preprocessing time that
A* required for the large area, JPS navigated through it
with remarkable proficiency. In addition, previous
observations indicate that JPS excelled in the retracing
phase once again. It completed the task in an
impressively quick 0.00588 milliseconds, whereas A*
required 1.7548 milliseconds longer.

These results demonstrate the capability of JPS with
Navmesh to navigate challenging environments with
numerous obstacles and varied terrains. Despite A*'s
extended preprocessing time, JPS achieved superior
performance during both the initial pathfinding and

https://uijrt.com/

47

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

backtracking phases by skipping unnecessary node
expansions and effectively storing path information.

CONCLUSION
The research results indicate that integrating the
NavMesh data structure into the Jump Point Search
(JPS) algorithm for navigating complex 3D
environments is effective. Utilizing memory of
previously explored paths, JPS with NavMesh
outperforms the A* algorithm in certain scenarios,
resulting in more efficient pathfinding and quicker
backtracking. JPS-NavMesh's adaptability is evident in
large maps with intricate structures, numerous obstacles,
and diverse terrains. However, JPS-NavMesh's efficacy
varies based on the environment and implementation
details. Recommendations consist of investigating
hybridization with other pathfinding algorithms,
conducting additional research to improve the JPS
algorithm in 3D, collaborating with game developers,
incorporating machine learning techniques, and
conducting continuous monitoring and evaluation. By
adhering to these recommendations, the JPS algorithm
with NavMesh integration can continue to evolve and
contribute to advancements in pathfinding algorithms,
which will benefit industries that rely on effective
navigation systems.

REFERENCES
[1] D. Harabor and A. Grastien, “An Optimal Any-

Angle Pathfinding Algorithm,” Proceedings of the

International Conference on Automated Planning
and Scheduling, vol. 23, pp. 308–311, Jun. 2013,
doi: 10.1609/icaps.v23i1.13609.

[2] A. J. Patel, “Red Blob Games: Introduction to A*,”

Introduction to the A* Algorithm.
https://www.redblobgames.com/pathfinding/a-
star/introduction.html

[3] S. R. Lawande, G. Jasmine, J. Anbarasi, and L. I.
Izhar, “A Systematic Review and Analysis of

Intelligence-Based Pathfinding Algorithms in the
Field of Video Games,” Applied Sciences, vol. 12,

no. 11, p. 5499, May 2022, doi:
10.3390/app12115499.

[4] P. Ranttila, “JPS Algorithm Adaptation and

Optimization to Three-dimensional Space -
UTUPub,” JPS Algorithm Adaptation and

Optimization to Three-dimensional Space -
UTUPub, Jun. 24, 2019.
https://www.utupub.fi/handle/10024/148054

[5] D. Harabor and A. Grastien, “Online Graph Pruning
for Pathfinding On Grid Maps,” Proceedings of the

AAAI Conference on Artificial Intelligence, vol.

25, no. 1, pp. 1114–1119, Aug. 2011, doi:
10.1609/aaai.v25i1.7994.

[6] X. Zheng, X. Tu, and Q. Yang, “Improved JPS

Algorithm Using New Jump Point for Path
Planning of Mobile Robot,” 2019 IEEE

International Conference on Mechatronics and
Automation (ICMA), Aug. 2019, Published, doi:
10.1109/icma.2019.8816410.

[7] C. Jiang, S. Sun, J. Liu, and Z. Fang, “Global path

planning of mobile robot based on improved JPS+
algorithm,” 2020 Chinese Automation Congress

(CAC), Nov. 2020, Published, doi:
10.1109/cac51589.2020.9327403.

[8] Y. Luo, J. Lu, Q. Qin, and Y. Liu, “Improved JPS

Path Optimization for Mobile Robots Based on
Angle-Propagation Theta* Algorithm,”

Algorithms, vol. 15, no. 6, p. 198, Jun. 2022, doi:
10.3390/a15060198.

[9] Y. Luo, J. Lu, Y. Zhang, Q. Qin, and Y. Liu, “3D

JPS Path Optimization Algorithm and Dynamic-
Obstacle Avoidance Design Based on Near-Ground
Search Drone,” Applied Sciences, vol. 12, no. 14,

p. 7333, Jul. 2022, doi: 10.3390/app12147333.
[10] T. K. Nobes, D. Harabor, M. Wybrow, and S. D. C.

Walsh, “The JPS Pathfinding System in 3D,”

Proceedings of the International Symposium on
Combinatorial Search, vol. 15, no. 1, pp. 145–152,
Jul. 2022, doi: 10.1609/socs.v15i1.21762.

[11] A. Y. Kapi, “A Review on Informed Search

Algorithms for Video Games Pathfinding,”

International Journal of Advanced Trends in
Computer Science and Engineering, vol. 9, no. 3,
pp. 2756–2764, Jun. 2020, doi:
10.30534/ijatcse/2020/42932020.

[12] M. Karlsson, “A navigation mesh-based
pathfinding implementation in CET designer. ,”

Linkoping University., 2021, Published, [Online].
Available: https://liu.diva-
portal.org/smash/get/diva2:1560399/FULLTEXT0
1.pdf

https://uijrt.com/

