
14

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

Hybridization of A* Pathfinding and Hierarchical
Pathfinding A* Algorithm for Pathfinding in Grid

Based Games
Clarence Jacob Agcaoili1, Xenaiah Yzabella Bernabe2, and Vivien A. Agustin3

1,2Student, College of Engineering - Pamantasan ng Lungsod ng Maynila
3Professor, College of Engineering - Pamantasan ng Lungsod ng Maynila

Abstract— A* algorithm is one of the most used Pathfinding Algorithm to date as well as one of its variants, Hierarchical
Pathfinding A*. The primary focus of this paper is A* issue with its scalability and its memory efficiency and HPA*
inaccuracy when returning a path. By hybridizing the algorithms, it aims to solve the aforementioned issues of both
algorithms and is also aimed to produce an alternative algorithm for game developers working with grid-based games like
in open-world games where Pathfinding is a necessary process. A simulator was created wherein it returns specific values
which are runtime in milliseconds, final path, length of the final path, the visited nodes, and the total number of nodes
visited which is the comparison basis of this study. Using the simulator, it returned the mentioned data in the form of Test
Seeds. By analyzing the results reflected in the Test Seeds conducted, it can be seen that by applying the hybrid algorithm,
mentioned issues have been resolved, with A*+HPA* producing a faster run time than A* but slower than HPA*,
A*+HPA* visiting fewer nodes than A*, and A*+HPA* returning a shorter path compared to HPA*. It can be concluded
that the chosen enhancements significantly affected the performance of the algorithms in this study.

Keywords— A Star, Grid-Based Pathfinding Algorithm, Hybrid Algorithm, Hierarchical Pathfinding A Star.

I. INTRODUCTION
Since the start of human civilization, exploration has
been a crucial part of our society. People will always
attempt to find the shortest path to their destination, and
that has not changed, more so with the advent of
technology has this ever been more prevalent, and with
widespread access to Global Position Systems (GPS),
this has allowed people to plan their routes while taking
into account a multitude of factors, such as traffic and
total distance needed to be traveled in the physical
realm. This is known as “Pathfinding”. Pathfinding is a

method wherein the fastest and most optimal route
between a starting point and its final destination is
produced.

However, even in the digital space, the need to find the
optimal path between two points exists, especially in
entertainment software such as video games [1],
pathfinding algorithms are commonly used to simulate
an entity moving from point to point, and the most
common pathfinding algorithm used in this context is
the A* algorithm.

A* also isn’t perfect for every use case. According to
Adi Botea, Martin Muller, and Jonathan Schaeffer,
certain programs such as computer games require
problems to be solved in real-time, often under the
constraints of limited computational resources. This is
due to A*’s runtime and memory consumption

increasing with the size of the space it needs to search
through [2], and this is why different variations of A*
have emerged since its creation. These variations offer
certain improvements from their predecessor, may it be
memory usage, the overall process, or the total runtime
of the algorithm. Examples of A* variants are Iterative
Deepening A* (IDA*), Theta*, etc [3].

For large spaces, such as open-world games where
pathfinding is used, A*’s memory consumption issue

comes to light. In addition, in a study conducted by
Wang et. al, open-world video games have created a
good reputation in the gaming industry, as players are
more engaged in the exploration of a certain location
within the game [4]. Open-world games require a large
scale of pathfinding, therefore, the algorithm to be
produced from this study is aimed to be used in game
development projects and the like.

This study aims to combine A* and HPA* to yield an
algorithm that utilizes the ability of A* to provide the
optimal path, but only for a set limited distance, which
then switches to HPA* to sacrifice optimality in favor of
significantly faster runtime to provide a near-optimal
path while maintaining the previous work of A*.

The A* algorithm expands through the search space as
it attempts to find a path towards the target, while the
algorithms expansion is weighted towards the direction

https://uijrt.com/

15

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

of the target node with the usage of a heuristic, this does
not fully prevent it from expanding to unnecessary
nodes, this results to the A* algorithm becoming more
computationally intensive over time [5][6].

The HPA* Algorithm divides the abstract graph into
clusters, and each cluster has a selection of border nodes
that are used as entry points to other neighboring
clusters, these entry points can potentially not result in a
valid path towards the entry node, or may be suboptimal
which results to a suboptimal path [7].

II. REVIEW OF RELATED LITERATURE
Algorithms are tools that are used almost for everything
human society needs for their respective industries.
Pathfinding is one of such algorithms that provide ease
in situations that require navigation. It is defined as
determining the fastest possible route between two given
points [8]. Examples of applications that use Pathfinding
include Google Maps and Waze. Pathfinding in games
is no uncommon feat. Games that have made their name
in the community such as the Assassin’s Creed series,

the Far Cry series, and the Left for Dead series all use
some variation of Pathfinding. Adi Botea, Bruno Bouzy,
Michael Buro, Christian Bauckhage, and Dana Nau b
wrote a comprehensive report of the pathfinding in
modern computer games. In their paper, they have stated
that the future of pathfinding algorithms in games is not
lost, and therefore has a lot of potential in being
developed into better algorithms. They also mentioned
that their survey can be used to identify potential issues
and struggles pathfinding may face in the game
development industry [9]. This was further supported by
Algfoor, Sunar, and Kolivand, that the future of
pathfinding in not only in games but also in robotics, are
prosperous when it comes to opportunities to flourish
[7].

In the years, different kinds of Pathfinding Algorithms
have emerged for the industry. They are divided into two
different categories: Uninformed and Informed
Pathfinding Algorithms. Uninformed Pathfinding
Algorithms perform a “blind search” where the only

information they use to return a path is the start node and
the destination node. On the other hand, Informed
Pathfinding Algorithms are those that use knowledge or
heuristic to navigate between different nodes to produce
an optimal path. These include Dijkstra’s Algorithm, A*

Algorithm and variants, and many more. These
algorithms have evolved and changed over the course of
the years since its development [10]. Therefore, this

study focuses on two pathfinding algorithms, A* and its
variant, HPA*.

In 1968, Peter Hart, Nils Nilsson, and Bertram Raphael
invented the A* (A star) algorithm for an existing
project called “The Shakey Project” which had the aim

to build a mobile robot that could plan its own path.
Originally Nils Nilsson proposed the usage of the Graph
Traverser algorithm, which was guided by a heuristic
function h(n), which is the estimated distance from node
n and the goal node, completely ignoring g(n), which
was the estimated distance from node n and the starting
node, and this is where Bertram Raphael suggested the
using the sum of g(n)+h(n), Peter Hart then invented the
concept of admissibility and consistency of heuristic
functions [11].

Since its creation, many different variants of A* have
emerged, where one is significantly different from the
other. These include Iterative Deepening A* (IDA*)
where, when compared to A*, uses lesser memory but
still functions the same way, Theta* where information
spreads around the boundaries of the grid without
restricting the paths toward grid edges [12], and Near-
Optimal Hierarchical Pathfinding or more commonly
known as Hierarchical Pathfinding A* (HPA*).

Daniel Foead, et al. wrote a literature review of A*
Pathfinding. This paper included a discussion of the
algorithm itself, the usage of the algorithm in the
industry when compared to other pathfinding algorithms
and A* variants, the known issues of the algorithm, and
potential development enhancements to the algorithm.
The authors of this paper have stated that although A*
has been existing for quite a while and has seen better
years, it is still a reliable foundation for new and
upcoming pathfinding algorithms that are highly usable
in the engines used today. One of these usable variations
of A is HPA* [6].

In 2004, Adi Botea, Martin Muller, and Jonathan
Schaeffer presented a solution to A*’s runtime issue

when pathfinding in large graphs or open spaces, they
called it Hierarchical Pathfinding A* (HPA*) a
derivation of the A* algorithm which reduced the graph
into linked local clusters, wherein at the local level, the
optimal distances for crossing from cluster to cluster is
pre-computed and cached, while at the global level, each
cluster is traversed in a single big step [2]. HPA* was
developed to enhance the strength of A* while
addressing its weakness.

https://uijrt.com/

16

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

This study aims to combine the strengths of A* and
HPA* to produce an algorithm that is flexible when it
comes to runtime and size. As said in a study conducted
by Anguelov, modern game environments are complex.
By putting the said game environment in a
straightforward graph format, locating the optimal path
is easier [13]. A* algorithm, although produces the
fastest runtime, is unreliable when it comes to larger grid
or graph sizes, which is typically the case for video
games - large scale graphs are needed. HPA* is slower
compared to A*, but is more dependable when scaling
larger graphs, highly optimal for video game
development. The hybrid algorithm A*+HPA* is
created to solve these discrepancies between these two
algorithms.

A* Algorithm’s first problem stems from its scalability,

in which it expands towards the target, so if the target is
far away or the graph is large, it results in longer run
times. A* Algorithm scans the entire graph to reach the
target node using a heuristic function, which in turn
causes the process to run slower. This is supported by
Brand and Bidarra’s study wherein they have stated that
the more the space grows, the longer the algorithm takes
to reach the target node [5].

As presented by another study by David Foead, Alifio
Ghifari, Marchel Budi Kusuma, and Novita Hanafiah, a
possible solution to A* scalability is by assessing the
dataset to be used and removing irrelevant data.
However, by doing so, the heuristic of the algorithm
may become less accurate and may lead to less optimal
paths [6].

Another issue with A* is that the more the graph it
searches increases, the more memory it will consume.
Anguelov mentioned in his study that “the primary

memory cost of the A* algorithm is in the fact that the
algorithm allocates memory for each node encountered
in the graph (for the algorithm-specific per-node data)”

[13].

As for the second algorithm to be used in this study,
HPA*, its issue lie on it returning a sub-optimal path, as
it does not scan the entire graph in one pass, rather it
groups the nodes of the graph in clusters, and then
performs pathfinding using A*.

As further supported by Anguelov, HPA* has shown
only 10% optimality of paths it returns, counting from
“the placement of the abstract nodes within the cluster

entrances.” [13].

In conclusion, the above used literatures and studies
have helped the researchers determine strengths and
weaknesses of A* and HPA* algorithm. These studies
have also provided enlightenment to the researchers
when it comes to potential issues and errors A* and
HPA* can produce when testing is implemented. By
understanding how A* and HPA* works using the
studies and literatures the researchers have read and used
in this study, executing the desired solution has become
easier and faster.

III. OBJECTIVES
This study aims to combine the A* algorithm and HPA*
algorithm, to create a hybrid algorithm that can utilize
A* to provide the optimal path within a limited distance,
and maintain the work that A* has provided, before
switching to HPA* to favor time efficiency while still
providing a near-optimal path above the limited
distance. This study is aimed to be used by game
developers who will be utilizing grid-based pathfinding.

Specifically, this study seeks to address the following
objectives:

To utilize HPA*’s ability to create a near-optimal path
in favor of finishing a path in a faster time frame for
longer distances.

To utilize HPA*’s ability to cluster nodes together and

only use the nodes within the selected clusters to reduce
the nodes A* will visit to find the near-optimal path.

To utilize A*s ability to find the optimal path, and
modify it to stop at a node that is past the set maximum
distance if it has not reached the target node, and switch
seamlessly to HPA*, continuing on from the path that
A* has generated so far in order to increase the paths
total optimality.

IV. METHODOLOGY
A. Analysis
The dataset used by the researchers in performing tests
is produced by the simulator created by the researchers
themselves. It is comprised of averages of multiple test
runs of A*, HPA*, and the proposed hybrid A*+HPA*
algorithm done on three different cluster sizes, namely
5x5, 10x10, and 15x15.

It also holds the A*+HPA* results for the static distance
limit of 50 and dynamic distance limit based on the
Euclidean Distance of the starting position to the target
position multiplied to 3 different incrementing
percentages.

https://uijrt.com/

17

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

Table IV.I

B. Design
In the year 1968, Peter Hart, Nils Nilsson, and Bertram
Raphael invented the A* (A star) algorithm, which is an
algorithm that aims to find the shortest optimal path to a
target node, it achieves this by maintaining a tree of
paths that start from the starting node and expand one
edge at a time until its goal has been achieved or a
different criterion has been achieved for the algorithm to
terminate. In each iteration of its main loop, it
determines the cost of a path from a starting node to a
node it has extended to by using a heuristic function (1).

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

Where in n is the last node on the path, g(n) is the
distance from node n and the starting node, and h(n) is
the distance from node n and the goal node, and selects
the node with the lowest heuristic, terminating only
when the goal node is reached, or if there are no eligible
nodes to expand to.[11]

Adi Botea, Martin Muller, and Jonathan Schaeffer
presented a hierarchical approach to solve A*’s

problem, where the computational resources required to
find a path using A*scales with the size of the space it
needs to search through, which resulted in major
performance bottlenecks. [2]

Fig. 3.1 Division of nodes into clusters

The solution they presented was to reduce the graph into
linked local clusters (see Figure 3.1) which illustrates a
graphical representation of a 1-level hierarchy for HPA*
pathfinding, with the checkered pattern visually
demonstrating the division of nodes into their respective
clusters. where in each cluster will be traversed in a
single big step. The hierarchy can also be extended to
two or more levels, where small clusters are grouped
into larger clusters.

Proposed A*+HPA* Hybrid Algorithm Design:
1. The proposed algorithm will first take the abstract

graph, start node, and target node as input.

2. From the starting node, the algorithm will attempt
to find a path through the graph till it reaches the
target node.

3. If the target node was reached within the distance
limit, it will return the generated path, however, if
the target node has not been reached, it will switch
to HPA* algorithm and continue on from where A*
left off and find a path to the target node.

4. The HPA* algorithm will then path find through the
cluster layer, starting from the continuation nodes
cluster to the target node, generating an abstract
path.

5. The HPA* algorithm will then refine the abstract
path by choosing entry nodes for each cluster.

6. The HPA* algorithm will then generate a detailed
path by using the A* algorithm to pathfind from
each entry node, only using the nodes within the
currently selected cluster.

7. The HPA* algorithm will then return the complete
path once the target node has been reached.

C. Development
In retrospect, any programming language is capable of
executing a pathfinding algorithm. So, in choosing a
programming language to be used for this study, the
researchers have chosen languages that are object-
oriented, commonly used in game development, and
familiar/have been used by the researchers in the past.

Considered languages were Python and Javascript, but
what is finalized and used in the study is C#. C# is an
object-oriented programming language that was a
descendant of C++, another object-oriented language,
where it is a natural environment for crafting software
components. C# is a language commonly used in game
development. A specific game engine called Unity
Engine utilizes C#. Since the study is primarily
concerned with providing an alternative algorithm for

https://uijrt.com/

18

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

game development, for the simulation of the algorithm,
the Unity Engine version used is 2021.3.24f1. An
Integrated Development Environment (IDE) called
Visual Studio Code for writing code is utilized for its
ability to utilize IntelliSense with Unity, which helps
reduce the time needed to write code.

The system is created and tested in a computer with a
64bit Windows 11 Pro operating system:

 Ryzen 7 5700x 3.4GHz

 RTX 2060 Super 8GB

 24GB DDR4 3200MHz

D. Testing
Each test consisted of one of the algorithms mentioned
in this study, a quality check of the simulation and
output, and a log of the results returned by the
Benchmark.

Fig 3.2 Invalid Seed (1467330106)

Utilizing the Master Script, the appropriate test
configuration for the graph is inserted, once configured,
a random seed is generated which will be curated by first
generating the graph using the same seed, but in 3
different cluster sizes, 5x5, 10x10, and 15x15, this is to
test how each algorithm will perform in small, medium,
and large search spaces, cluster density will be kept at a
constant 10 on all tests for consistency, this is all done
by pressing the Execute button while the selected
algorithm is set to None, this will generate the abstract
graph and physical grid once executed, for the curation
process of a random seed, the start node and target node
must not be obstructed on all sides by blocked nodes and
a valid path must exist between the Start node and Target
Node in all 3 different cluster sizes, this is to ensure that
both nodes are reachable during the testing of the

algorithms, (see Fig. 3.2 for an example of an invalid
seed).

Once the random seeds are chosen for testing, 3
algorithms, A*, HPA*, and A*+HPA*, these algorithms
will then be executed 20 times to generate a reasonably
accurate average runtime for each algorithm, the same
will be done with A*+HPA*, however, A*+HPA* will
be tested in 4 different configurations, 1 using a static
distance limit which would be set to 50, and dynamic
distance limit based on the Euclidian Distance from the
start and the target using 3 different multipliers 25%,
50%, and 75%, this is to test which configuration would
yield the most optimal outcome in different scenarios.

Fig 3.3 (a) Expected result (b) Unexpected Result

All results will then be curated and checked for any
abnormalities, such as errors and unexpected results (see
Fig.3.3), which shows unusually high run times
sometimes caused by caching and initialization of the
resources required by the program. If no errors or
abnormalities are observed, the physical grid showing
the path and visited nodes will be saved as a PNG file
and test results will be documented in a separate Txt file.

The overall process of the algorithm goes as follows:
1. 5 random seeds are generated and curated for

reachability between the start node and target node
in all 3 cluster sizes (5x5, 10x10, and 15x15), with
a consistent cluster density of 10.

https://uijrt.com/

19

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

2. The appropriate seed and cluster size are applied for
the graph and the appropriate configuration for
A*+HPA* pathfinding algorithm is applied if
required.

3. A*, HPA*, and A*+HPA* pathfinding algorithms
are then executed 20 times to generate a path for
each algorithm and configuration, to generate a
reasonable average runtime for each test run.

4. The results are then curated for any errors and
unexpected results.

5. If no errors and unexpected results are observed, the
results for each algorithm are saved, including the
result on the physical grid which is saved as a PNG,
and the performance metrics which is saved as a Txt
file.

6. Repeat step 2 until A*, HPA*, and A*+HPA* (4
configurations) are tested on all the 3 curated seeds
are tested in the 3 different cluster sizes.

RESULTS AND DISCUSSION
A. Cluster Size 5x5

Table V.I

The A* algorithm exhibited the longest average runtime
and largest on average number of nodes visited of every
test in a 5x5 cluster size, with an average runtime of
13.29 ms and an average of 1817.75 nodes visited
respectively. The hybrid algorithm with a static distance
limit of 50, generated a path length with the most nodes
on average among the other algorithms tested with an
average path length of 104.00, it is however notable that
the hybrid algorithm with a dynamic distance limit of
50% managed to return a shorter path to the target with
an average path length of 101.00 within a significantly
shorter runtime of 2.21 ms when compared to A*.

B. Cluster Size 10x10
Table V.II

The A* algorithm exhibited the longest average runtime
and largest on average amount of nodes visited of every
test in a 10x10 cluster size, with an average runtime of
235.85 ms and an average of 7385.50 nodes visited
respectively, HPA* produced the highest average path

length 207.50, it is, however, notable that the proposed
algorithm with a dynamic distance limit of 25%,
managed to return a path shorter on average path length
of 205.50 within a runtime of only 2.76 ms, while only
visiting 1202.00 nodes on average, the proposed
algorithm with a dynamic distance limit further reducing
the average path length to 203.00, while only visiting
2845.50 nodes on average, however, in a slightly longer
runtime of 24.95ms, which remains significantly shorter
than A*’s average runtime.

C. Cluster Size 15x15
Table V.III

The A* algorithm exhibited the longest average runtime
and largest on average amount of nodes visited of every
test in a 15x15 cluster size, with an average runtime of
1332.23 ms and an average of 16787.25 nodes visited
respectively, HPA* produced the highest average path
length 312.00, it is, however, notable that the proposed
algorithm with a static distance limit of 50 managed to
produce a shorter path on average 309.50 while only
visiting 2269.75 nodes, within a runtime of 8.72 ms, and
the proposed algorithm with a dynamic distance limit of
50% producing a shorter path on average of 306.50
while visiting 6157.00 nodes on average, within a
runtime of 126.51ms which while quicker than A* may
not be suitable for an algorithm that is meant to run in
near to real-time.

D. Overview of Discussion
With the test results from the 3 different cluster sizes and
4 curated seeds, it is observed that the A* algorithm
produced results with a longer average runtime and
visited the most amount of nodes when compared to the
other algorithms tested in this study. However, it also
provided the shortest path in all 3 cluster sizes.

The HPA* algorithm exhibited the shortest run time in
all 3 cluster sizes while producing the longest path on
average in cluster sizes 10x10 and 15x15.

Moreover, the proposed algorithm managed to perform
significantly better than A* in average runtime and
average number of nodes in all 3 cluster sizes, all while
staying below HPA* average path length in cluster sizes
10x10 and 15x15.

https://uijrt.com/

20

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

Fig. 5.1 (a) A* Result (b) A*+HPA* 50% Result

Both are results of the seed 1160403470 in a 10x10
Cluster

Objective 1 has been achieved by utilizing HPA*’s

ability to produce a path in a fast timeframe than A*, and
Objective 2 has been achieved by utilizing HPA*’s

ability to only path through clusters, and the nodes
within the selected clusters, therefore reducing the
amount of visited nodes.

Table V.IV

Fig. 5.2 (a) HPA* Result (b) A*+HPA* 50% Result

Both are results of the seed 1160403470 in a 10x10
Cluster

Objective 3 has been achieved by utilizing A*’s ability

to find an optimal path and modifying it in a way that
stops at a maximum distance, and since the target node
has not be reached, it seamlessly switched to HPA*,
continuing on from the path A* has generated, resulting
to improved optimality compared to utilizing HPA*
independently.

Table V.VI

V. CONCLUSIONS AND RECOMMENDATIONS
A. Conclusion
The A* algorithms main issues when it comes to its
scalability lies with its runtime and memory usage when
attempting to path through large search spaces, which is

https://uijrt.com/

21

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

a problem as for games with large grid maps, as games
typically run at real time or near real time. The HPA*
algorithm attempts to solve this issue by grouping nodes
into clusters and using only nodes within the selected
clusters to path towards the target, therefore
significantly decreasing the time required to find a path
to the target. This, however, comes at the cost of creating
a path that is suboptimal.

The enhancement of combining A* with the HPA* and
introducing a distance limit to A* attempts to solve this
issue by giving developers a flexible algorithm where
A* is still primarily used till it reaches the target or the
distance limit. Thus by applying this hybrid algorithm,
the benefits of A* and HPA* could be exploited while
also mitigating their weaknesses. There are nuances
however, specifically in small search spaces where if the
distance limit is not set appropriately the result has the
potential of being even worse results when compared to
A* and HPA*.

That being said, in larger search spaces, this is less of a
problem, resulting in an algorithm that is able to produce
a path:

When compared to A*, is able to produce a path shorter
by modifying A* to only path at a set limited distance,
in combination of utilizing HPA*s ability to reduce the
path in a shorter runtime.

While visiting fewer nodes when compared to
independently using A* by using HPA*s ability to path
through clusters and its ability to only use the nodes in
the selected clusters, significantly reducing the size of
the search space, therefore reducing the number of nodes
that could be visited.

The use of A*s ability to produce an optimal path due to
its thorough processing of nodes which helps to increase
the total optimality of the generated path when
compared to utilizing HPA* on its own.

With these algorithms hybridized and modified, a path
could be generated in a faster timeframe while visiting
fewer nodes when compared to A*, and a shorter path
could be generated when compared to HPA*, providing
a hybrid algorithm that exploits both algorithm’s
strengths, and mitigating their weaknesses.

B. Recommendations
The researchers recommend the produced algorithm of
this study to game developers who wish to have options
when it comes to choosing an algorithm to use for their

future projects, as the results reflected by the algorithm
are not far off with the results reflected by A* and HPA*
alone. The algorithm can also be used in other future
studies that may require a hybrid algorithm.

For future researchers who wish to take up this study,
the researchers recommend to utilize other pathfinding
algorithms and/or other variants of A* while using the
same hybrid approach. This is to make sure flexibility
and variation is present. Another recommendation
would be to use a different programming language when
simulating the algorithms in this study. Examples are
Python, which is a commonly used language nowadays,
and Javascript. The researchers also recommend testing
the hybrid algorithm in other development engines that
are not restricted to game development (e.g. in Robotics,
logistics, etc.).

ACKNOWLEDGMENT
The researchers most especially want to thank God for
the enlightenment He has given to them during the
course of making this study. The researchers would also
like to express their immense gratitude to their thesis
adviser, Prof. Vivien A. Agustin, for the guidance and
encouragement she has given them throughout the
process of creating this study. A heartfelt gratitude is
also in order to the Computer Science Department and
the researchers’ friends and family for their unwavering
support regarding this study.

REFERENCES
[1] L. Krayzman, N. Kumar, and S. Scott Lawrence,

“Applications of Pathfinding,” Pathfinding

InfoPages.
https://mbhs.edu/~lpiper/pathfinding/applications.
php (accessed Jun. 04, 2023).

[2] Botea, M. Müller, and J. Schaeffer, “Near Optimal

Hierarchical Path-Finding.,” vol. 1, pp. 1–30, Jan.
2004.

[3] Patel, “Variants of A*,” Stanford.edu, 2016.

http://theory.stanford.edu/~amitp/GameProgrammi
ng/Variations.html

[4] Wang, Z. Gao, and M. Shidujaman, “Meaningful

Place: A Phenomenological Approach to the Design
of Spatial Experience in Open-world Games,” May

2023, doi:
https://doi.org/10.1177/15554120231171290.

[5] S. Brand and R. Bidarra, “Parallel Ripple Search –
Scalable and Efficient Pathfinding for Multi-core
Architectures,” pp. 290–303, Nov. 2011, doi:
https://doi.org/10.1007/978-3-642-25090-3_25.

https://uijrt.com/

22

All rights are reserved by UIJRT.COM.

United International Journal for Research & Technology

Volume 04, Issue 08, 2023 | Open Access | ISSN: 2582-6832

[6] Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, and
E. Gunawan, “A Systematic Literature Review of

A* Pathfinding,” Procedia Computer Science, vol.

179, pp. 507–514, 2021, doi:
https://doi.org/10.1016/j.procs.2021.01.034.

[7] Z. Abd Algfoor, M. S. Sunar, and H. Kolivand, “A

Comprehensive Study on Pathfinding Techniques
for Robotics and Video Games,” International

Journal of Computer Games Technology, vol. 2015,
pp. 1–11, 2015, doi:
https://doi.org/10.1155/2015/736138.

[8] X. Cui and H. Shi, “A*-based Pathfinding in
Modern Computer Games,” IJCSNS International

Journal of Computer Science and Network
Security, vol. 111, 2011, Available:
http://paper.ijcsns.org/07_book/201101/20110119.
pdf

[9] Botea, B. Bouzy, M. Buro, C. Bauckhage, and D.
Nau, “Pathfinding in Games,” doi:

https://doi.org/10.4230/DFU.Vol6.12191.21.

[10] H. K. Sidhu, “Performance Evaluation of

Pathfinding Algorithms,” PDF, University of

Windsor, 2020. Accessed: Jun. 01, 2023. [Online].
Available:
https://scholar.uwindsor.ca/cgi/viewcontent.cgi?art
icle=9230&context=etd

[11] P. Hart, N. Nilsson, and B. Raphael, “A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths,” IEEE Transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107,
1968, doi:
https://doi.org/10.1109/tssc.1968.300136.

[12] K. Daniel, A. Nash, S. Koenig, and A. Felner,
“Theta*: Any-Angle Path Planning on Grids,”

Journal of Artificial Intelligence Research, vol. 39,
pp. 533–579, Oct. 2010, doi:
https://doi.org/10.1613/jair.2994.

[13] B. Anguelov, “Video game pathfinding and

improvements to discrete search on grid-based
maps,” Jan. 2011.

https://uijrt.com/

