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Abstract—  This paper introduces an enhanced version of the Grasshopper Optimization Algorithm with the aim to 
improve upon problems with slow convergence and the original algorithm not being suited to solving binary optimization 
problems. The solutions presented are to make use of q-Gaussian mutation in order to jump out of local optimum, thereby 
leading to faster convergence and the V4 transform function to map continuous values to binary values. The enhanced 
algorithm is applied to the optimization of feature selection. The proposed algorithm is tested against four other binary 
optimization algorithms and assessed on three different datasets. The results display that the proposed algorithm exceeds 
the compared techniques in terms of accuracy and minimizing features selected. 
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I. INTRODUCTION 

In recent years, datasets with a vast number of 
characteristics and relatively few patterns have been 
generated. A large number of irrelevant and duplicated 
features may drastically decrease the accuracy of learnt 
models and slow down their learning rate. This issue, 
referred to as the curse of dimensionality in data mining 
techniques, increases the computational complexity of 
model construction (Moradi et al., 2016). 
 
Feature Selection (FS) is a challenging problem in 
machine learning that seeks to reduce the number of 
features by deleting unnecessary, redundant, and noisy 
data while maintaining an acceptable degree of 
classification accuracy. This is accomplished by 
deleting features that are not relevant to the problem at 
hand (Mafarja et al., 2019). 
 
Grasshopper Optimization Algorithm is a contemporary 
algorithm inspired by nature that imitates the swarming 
behavior of grasshoppers in the wild (Saremi et al., 
2017). The initial version of GOA was created to solve 
continuous optimization challenges (Saremi et al., 
2017). Nevertheless, several optimization problems 
(e.g., FS) contain discrete choice variables and search 
space. 
 
In this paper, we propose the Enhanced Binary 
Grasshopper Optimization Algorithm (EBGOA) 
designed to tackle binary optimization problems. The 
V4 transfer function adapted from Mafarja et al. (2018) 

is used to convert continuous values into binary values. 
q-Gaussian mutation is applied to the positions 
generated by mutating the values thus allowing to jump 
out of local optimum. The results are obtained using 
three select UCI datasets and is compared against the 
Binary Bat Algorithm (BBA)(Nakamura et al., 2012), 
the Binary Cuckoo Search (BCS)(Pereira et al., 2014), 
the Binary Grasshopper Optimization Algorithm 
(BGOA-M)(Mafarja et al., 2018), and the Binary 
Particle Swarm Optimization Algorithm 
(BPSO)(Khanesar et al., 2008) to determine the 
proposed algorithm’s robustness 

.II. RELATED STUDIES 

Using high-dimensional datasets makes the feature 
selection optimization problem more difficult. 
Traditional solutions prove ineffective in resolving this 
intricate situation. To solve this constraint, a number of 
swarm-based algorithms have been presented in the 
literature and are now employed to optimize the 
selection of features. 
 
To overcome the feature selection problem, Hitchem et 
al. (2019) proposed a new binary grasshopper 
optimization algorithm NBGOA. It employs basic 
operations to update grasshopper positions after 
initializing them with binary values. 
 
Twenty benchmark datasets from UCI datasets are 
tackled using the suggested NBGOA and five alternative 
methodologies from the literature. 
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Two innovative binary versions of the GOA method 
were suggested and used to FS problems in (Mafarja et 
al., 2019). The first strategy is based on transfer 
functions, while the second approach employs a unique 
mechanism that repositions the current solution by 
taking into account the position of the best solution so 
far. 25 standard UCI benchmark datasets were utilized 
to test the suggested techniques. The results were 
compared to 11 FS approaches found in the literature, 
including five wrapper-based metaheuristics and six 
filter-based methods. 
 
A new nature-inspired feature selection technique based 
on bat behavior was proposed by Rodrigues et al. 
(2013). To determine the set of features that maximizes 
the accuracy in a validating set, the wrapper approach 
combines the strength of bat exploration with the speed 
of the Optimum-Path Forest classifier. 
 
Vieira et al. (2013) proposed a modified binary particle 
swarm optimization (MBPSO) method for feature 
selection with simultaneous optimization of SVM kernel 
parameter setting, which they applied to predicting 
mortality in septic patients. It was put to the test on six 
databases, and it outperformed state-of-the-art 
approaches for PSO and produced similar or better 
results than GA. 
 
In (Rodrigues et al., 2013) a new feature selection 
method based on the behavior of cuckoo birds named 
Binary Cuckoo Search was proposed. The tests were 
conducted on two datasets with the goal of detecting 
thefts in power distribution systems. Wrapper feature 
selection approaches minimize the number of features in 
the original feature set while simultaneously improving 
classification accuracy. A wrapper-feature selection 
approach based on the binary dragonfly algorithm is 
proposed in (Mafarja et al., 2017). When compared to 
other methodologies, the experimental results suggest 
that the BDA methodology performs better. 
 
Jona and Nagaveti (2014), proposed a new hybrid 
metaheuristic dubbed Ant-Cuckoo Colony Optimization 
for feature selection in Digital Mammogram. It is a 
hybrid of Ant Colony Optimization (ACO) and Cuckoo 
Search (CS). 
 
To distinguish between normal and abnormal 
mammograms, a Support Vector Machine (SVM) 
classifier with Radial Basis Kernel Function (RBF) is 
used in conjunction with the ACO. The experiments are 
carried out in the miniMIAS database. The novel hybrid 
algorithm's performance is compared to that of the ACO 
and PSO algorithms.  

A binary version of the hybrid Grey Wolf Optimization 
(GWO) and Particle Swarm Optimization (PSO). The 
wrapper-based method K-Nearest Neighbors (KNN) 
classifier with Euclidean separation matrices is used to 
find the best solutions. The results show that 
BGWOPSO outperforms the Binary Grey wolf 
optimization (BGWO), the Binary Particle Swarm 
Optimization (BPSO), the Binary Genetic Algorithm 
(BGA), and the Whale Optimization Algorithm with 
Simulated Annealing (WOASAT-2) when using several 
performance measures such as accuracy, BGWOPSO 
greatly exceeded Binary Grey wolf optimization 
(BGWO) in terms of finding the best optimal features 
and computational time (Al Tashi et al., 2019). 
 
Yang et al. (2015) tested a binary-constrained variant of 
the Flower Pollination Algorithm (FPA) for feature 
selection, where the search space is a boolean lattice and 
each feasible solution, or string of bits, signals whether 
a feature will be employed to assemble the final set. 
Particle Swarm Optimization, Harmony Search, and the 
Firefly Algorithm have all been compared to the 
suggested method. PSO appears to have the fastest 
convergence process, while HS has the lowest 
computational cost. 
 
Moth-flame optimization (MFO) is a swarm intelligent 
optimization algorithm that mimics the motion of moths 
recently proposed by (Zawbaa et al., 2016). The 
algorithm is used in the domain of machine learning for 
feature selection in the wrapper-based feature selection 
mode to discover the best feature combination. The 
evaluation stage in wrapper-based feature selection 
employs a machine learning technique. Despite being 
time-consuming, this strategy proved to be effective in 
terms of categorization accuracy. In this study, MFO is 
used as a strategy for finding optimal feature sets and 
maximizing classification performance. Furthermore, 
the results demonstrate that MFO outperforms GA and 
PSO, which are commonly used in wrapper-based 
feature selection. 
 
In (Mafarja and Mirjalili, 2018), two incremental hill-
climbing techniques (QuickReduct and CEBARKCC) 
are hybridized with the binary ant lion optimizer in a 
model called HBALO. The proposed method generates 
a pool of solutions (ants) at random, which is then 
enhanced by embedding the most useful features in the 
dataset that are selected by the two filter feature 
selection models. 
 
A novel hybrid feature selection approach based on 
particle swarm optimization is proposed in (Parham and 
Mozhgan, 2016). To pick the less correlated and salient 
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feature subset, the suggested technique HPSO-LS uses a 
local search strategy incorporated in particle swarm 
optimization. The goal of the local search technique is 
to use correlation information to guide the particle 
swarm optimization search process in order to select 
distinct features. The results show that the proposed 
method improves classification accuracy over the filter 
and wrapper based feature selection methods. 

III.GRASSHOPPER 
OPTIMIZATIONALGORITHM 

A. Overview 
The Grasshopper Optimization Algorithm, which was 
initially developed by Saremi et al. (2017), is one of the 
new nature-inspired and population-based algorithms 
that replicates the behavior of grasshopper swarms seen 
in natural environments. Exploration and exploitation of 
the search space are two phases that are required for 
optimization to be successful. In the larval stage, the 
swarm moves very slowly and the grasshoppers take 
very little steps. These are the primary characteristics of 
the swarm. Adult swarms, on the other hand, are 
characterized by movement that is both rapid and long-
distance. 
 

𝑋𝑖 =  𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 (1) 
 
where Xi stands for the location of the ith grasshopper, 
Si for the social communication between grasshoppers, 
Gi for the pressure force exerted on the ith grasshopper, 
and Ai for the advection of wind. 
 

𝑆𝑖 =  ∑ 𝑆(|𝑋𝑗 − 𝑋𝑗|)
𝑋𝑗 − 𝑋𝑖

𝑑𝑖𝑗

𝑁

𝑗=1,𝑗≠1

(2) 

 
where N is the total number of grasshoppers in the 
swarm, dij is the distance in grasshoppers that separates 
the ith and jth grasshoppers, and S is a function that 
specifies the level of social cohesion and is determined 
using Eq. (3). 
 

𝑆(𝑟) =  𝑓𝑒
−𝑟

𝑙 − 𝑒−2 (3) 

 
where f and l are two constants that indicate respectively 
the intensity of attraction and the attractive length scale, 
and r is a real value. Repulsion occurs in the interval [0 
2.079]. When a grasshopper unit is 2.079 means that the 
current grasshopper is far away from another 
grasshopper, there is neither repulsion nor attraction. 
This is described as the encouragement distance. 
(Hichem et al., 2019). The authors (Saremi et al., 2017) 
make the assumption that the wind direction is always 

blowing in the direction of a target, and they do not take 
into account the gravity operator. Then Eq. (1) results 
to: 
 

𝑋𝑖
𝑑 = 𝑐 (

𝑢𝑏𝑑 − 𝑢𝑏𝑑

2
𝑆(|𝑋𝑗

𝑑 − 𝑋𝑗
𝑑|)

𝑋𝑗 − 𝑋𝑖

𝑑𝑗𝑖

) + 𝑇𝑑 (4) 

 
where ubd denotes the upper bound in the dimension d 
and lbd denotes the lower bound in the dimension d, 
respectively. Td is the value of the dth dimension in the 
goal (the best solution found up to this point), and the 
coefficient c, which decreases the comfort zone 
proportionally to the number of iterations and is 
computed as follows in Eq. (5). 
 

𝑐 = 𝐶𝑚𝑎𝑥 − 𝑙
𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛

𝐿
(5) 

 
where Cmax denotes the highest possible value, Cmin 
denotes the lowest possible value, l is the iteration that 
is currently being performed, and L denotes the 
maximum number of iterations. In the study by Saremi 
et al. (2017), the authors set Cmax to 1 and Cmin to 
0.00000001. Eq. (4) demonstrates that the future 
position of a grasshopper may be determined by taking 
into account both its present position as well as the 
positions of all of the other grasshoppers (first term in 
Eq. (4)), as well as the location of the target (second 
term).` 
 
B. Pseudocode of the Grasshopper Optimization 
Algorithm 

Initialize the swarm Xi (i=1,2,...,n) 
Initialize the cmax, cmin, and maximum number of 
iterations 
Calculate the fitness of each search agent 
T=the best search agent 
while (l< Max number of iterations) 

Update c using Eq. (5) 
for each search agent 

Normalize the distances between 
grasshoppers in [1,4] 
Update the position of the current search 
agent by the Eq. (4) 
Bring the current search agent back if it goes 
outside the boundaries 

end for 
Update T if there is a better solution 
l=l+1 

end while 
Return T 
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IV. ENHANCED BINARY GRASSHOPPER 
OPTIMIZATION ALGORITHM (EBGOA) 

A.  Transfer Function 

A transfer function is used to map a continuous search 
space to a binary one, and the updating process is 
designed to switch positions of particles between 0 and 
1 in binary search spaces (Mirjalili and Lewis, 2013). 
The V4 transfer function used is adapted from Mirjalili 
and Lewis (2013), they found that V4 was capable of 
finding the best solution with a good convergence rate. 
Performing better than all other tested algorithms in 13 
out of 25 benchmark functions. It was found that the 
proposed v-shaped family of transfer functions, 
especially the V4 function, has merit for use in binary 
algorithms. (Mirjalili and Lewis, 2013). 
 

𝑇(𝑥) = |
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜋

2
𝑥)| (6) 

 

B.  q-Gaussian Mutation 

We employ the use of the q-Gaussian mutation in order 
to combat the algorithm being stuck in local optima. The 
q-Gaussian distribution is employed to generate new 
candidate solutions by mutation. A real parameter q, 
which defines the shape of the distribution, is encoded 
in the chromosome of individuals and is allowed to 
evolve (Tinos and Renato, 2008). 
 
The shape of the q-Gaussian mutation distribution is 
controlled by a real parameter q. The control of the 
parameter q allows to smoothly and continuously 
change the shape of the distribution, as q is a real 
parameter and a small change in its value causes a small 
change in the shape of the mutation distribution (Tinos 
and Renato, 2008). 
 
Self-adaptation causes a rise in the parameter q, which 
results in a greater number of long leaps (similar to the 
Cauchy mutation), which might assist the population 
escape from local optima and/or converge quicker to the 
optimal state. In later phases following environmental 
changes, the parameter q reaches small values, which 
enhances local search (like the Gaussian mutation) 
(Tinos and Renato, 2008). 
 
The generalized Box-Müller algorithm provides a 
methodology for generating q-Gaussian random 
variates. The parameter −∞ < q ≤ 3 is related to the shape 

of the tail decay (Thistleton et al., 2007). The specific 
values used for the parameter q being -0.5, 1 and 2 were 
inspired from Tinos and Renato (2008). Furthermore, 
Eq. (7) was adapted from Jie et al. (2018). 

 

𝑋𝑖
𝑑 = 𝑋𝑖 ⊕ 𝑄𝐺(𝑞) (7) 

 

C.  Pseudocode of the Enhanced Binary Grasshopper 
Optimization Algorithm 

Initialize the swarm Xi (i=1,2,...,n) 
Initialize the cmax, cmin, and maximum number of 
iterations 
Calculate the fitness of each search agent 
T=the best search agent 
while (l< Max number of iterations) 

Update c using Eq. (5) 
for each search agent 

Normalize the distances between 
grasshoppers in [1,4] 
Update the position of the current search 
agent by the Eq. (4) 
Apply q-Gaussian mutation by the equation 
(2.9) 
Bring the current search agent back if it goes 
outside the boundaries 

end for 
Apply V4 transfer function by the Eq. (6) 
Update T if there is a better solution 
l=l+1 

end while 
Return T 

V.  METHODOLOGY 

A.  Data Description 

The performance of the proposed EBGOA is evaluated 
and compared alongside various algorithms in their 
application to feature selection problems. To verify the 
results, we chose three datasets obtained from the 
University of California at Irvine (UCI) machine 
learning repository. These datasets have been used in 
many studies of the machine learning area, however, the 
datasets used can only be categorized as small 
dimensional datasets due to the researchers’ limitations 

regarding computing resources. Table 1 describes the 
properties of the datasets used. 
 

Table I. List of used Datasets 

No. Dataset # Feature # Instances 

1 Lymphograph
y 

18 148 

2 SPECT 22 267 

3 Wine 13 178 
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B.  Benchmark Algorithm and Parameters Setting 

The proposed EBGOA is measured and compared 
against four recent algorithms in the feature selection 
space. The Binary Bat Algorithm (BBA)(Nakamura et 
al., 2012), the Binary Cuckoo Search (BCS)(Pereira et 
al., 2014), the Binary Grasshopper Optimization 
Algorithm (BGOA-M)(Mafarja et al., 2018), and the 
Binary Particle Swarm Optimization Algorithm 
(BPSO)(Khanesar et al., 2008). 
 
The results were obtained under similar parameters for 
all algorithms with a population size of 50 and with 
epochs set to 15. With the exception being the proposed 
EBGOA. This was done to measure the results under 
different values for q ranging from -0.5, 1 and 2.  
 
5-Nearest-Neighbors algorithm was used for 
classification and results for all algorithms were 
recorded for 10 independent runs. All parameters used 
are listed under Table 2.  The results were computed on 
a Lenovo ThinkPad T495 with an AMD Ryzen 3500U, 
1.4GHz,  16 GB RAM running on Ubuntu 20.04. 
 

Table II. Initial Parameters of Tested Algorithms 

Parameter Value 

Epochs 15 

Pop-size 50 

Runs 5 

C.  Evaluation riteriaa 

The evaluation criteria used, average classification 
accuracy (A_AAC) and average features selection size 
were sourced from (Hichel, et al., 2019). The average 
classification accuracy (A_ACC) is the average of 
solutions obtained from M runs of an optimization 
algorithm and can be formulated as in Eq. 8 where M is 
the number of runs of the optimization algorithm to 
select a feature subset. ACCi is the accuracy of the best 
solution obtained from the  ith run (Hichel, et al., 2019). 
 

𝐴𝐴𝐶𝐶 =
1

𝑀
∑ 𝐴𝐶𝐶1

𝑀

𝑖=1

(8) 

The average features selection size (AFSS) is the 
average number of selected features set obtained by the 
best solutions to the total number of features from M 
runs. This criterion can be calculated as in Eq. 9. The 
results of this criterion are reported in Table 5. where M 
is the number of runs of the optimization algorithm, 
Size(i) returns the number of features selected in the best 
solution from the ith run, and D is the size of the original 
dataset (Hichel, et al., 2019). 

𝐴𝐹𝑆𝑆 =
1

𝑀
∑

𝑆𝑖𝑧𝑒(𝑖)

𝐷

𝑀

𝑖=1

(9) 

VI. RESULTS

 

Table III. Average Classification Accuracy and Standard Deviation Results 

Dataset BBA BCS BGOA-M BPSO EBGOA 

 A_ACC StD A_ACC StD A_ACC StD A-
ACC 

StD A_ACC StD 

Lymphography 0.895 0.102 0.891 0.007 0.910 0.006 0.889 0.010 0.914 0.012 

SPECT 0.837 0.006 0.835 0.178 0.848 0.009 0.833 0.010 0.848 0.009 

Wine 0.958 0.012 0.961 0.006 0.962 0.005 0.940 0.018 0.964 0.005 

 

Table IV. Average Selected Feature Ratio to the Total Number of Features 

Dataset BBA BSC BGOA-M BPSO EBGOA 

Lymphography 0.729 0.863 0.721 0.919 0.688 

SPECT 0.636 0.690 0.645 0.672 0.609 

Wine 0.631 0.754 0.692 0.892 0.739 

 

Table V.  A_AAC, SD, and AFSS for EBGOA with Different q-values 

EBGOA 

Dataset q A_CC StD AFSS 
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SPECT 2 0.848 0.009 0.609 

SPECT 1 0.856 0.007 0.618 

SPECT -0.5 0.861 0.003 0.559 

The numerical results for the proposed EBGOA, as well 
as the other benchmark algorithms are presented here. 
Table 3 summarizes the findings for average 
classification accuracy, defined in Eq. 8. It is observed 
that the proposed EBGOA outperforms all the other 
benchmark algorithms, only matching with BGOA-M for 
the SPECT dataset. Table 4 summarizes the findings for 
average feature selection size, defined in Eq. 9.  EBGOA 
was able to have less features selected compared to other 
algorithms, with the exception being on the Wine dataset. 
BBA was able to have the lowest average for selected 
features for the Wine dataset. Table 5 outlines the result 
for average classification accuracy and average feature 
selection size when modifying q in EBGOA for the 
SPECT dataset. It indicates that having q set to -0.5 
achieves the best result across different values for q as 
well as other algorithms for the SPECT dataset in regards 
to average classification accuracy and average feature 
selection size. Also, with q being set to 1 also results in 
an accuracy higher than other algorithms as well as 
achieving a higher accuracy than with q being set to 2. 
With all other datasets, the value of q was set to 2, this 
implies that it’s possible for the proposed EBGOA to 

receive an even higher accuracy across other datasets. In 
terms of average feature selection size, there were no 
notable differences with different values of q. 

VII. CONCLUSION 

In this paper, we proposed an Enhanced Binary 
Grasshopper Optimization Algorithm (EBGOA) 
applied to feature selection problems. The proposed 
EBGOA alongside four other algorithms are tested on 
three datasets sourced from the UCI machine learning 
repository. The results of all algorithms were compared 
in terms of average classification accuracy and average 
feature selection size. The proposed algorithm 
outperformed or equalled the other compared 
techniques in terms of average classification accuracy. 
Furthermore, modifying the parameter q to -0.5 in the 
proposed EBGOA resulted in a higher accuracy and 
lower selected features compared to other algorithms. 
However, in terms of average feature selection size, the 
proposed EBGOA scored slightly lower or matched the 
best result. For future work, a method to modify the 
parameter q dynamically during runtime may be 
explored. Furthermore, the algorithm’s efficacy on 

varying sizes of datasets may also be investigated. The 
proposed algorithm’s use on other binary optimization 
problems may also be explored. 
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