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Abstract— Genomic data has the potential to improve 

healthcare strategy in a variety of ways, including illness 

prevention, improved diagnosis, and better treatment. 

While Machine Learning may have revolutionized many 

fields, its implementation in the field of Genomics is 

new. Currently, Machine Learning is being applied and 

tested in a lot of genomic processes but all of those have 

not been clinically validated. Hence, we are far from 

providing Machine Learning or Deep Learning models 

for -omics data which can be implemented. This paper 

aims to explore in a very uncomplicated manner, what 

exactly is genomics, where does high performance 

computing and machine learning come into picture, 

current applications of machine learning in genomics 

and discuss potential future scope of machine learning 

in genomics. 
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I. INTRODUCTION 

The structure, function, evolution, mapping, and editing 

of genomes are all studied in genomics, which is an 

interdisciplinary subject of biology. A genome is a full 

set of DNA that includes all of an organism's genes. 

 

Genomics is the study of an organism's entire genome, 

which includes genetic material. To sequence, assemble, 

and analyse the structure and function of genomes, 

genomics uses a combination of recombinant DNA, 

DNA sequencing technologies, and bioinformatics. It 

varies from traditional genetics in that it considers an 

organism's entire hereditary material rather than just one 

gene or gene product at a time. 

 

The ability of a PC to process data and perform complex 

calculations at rapid speeds is known as high-

performance computing (HPC). The supercomputer is 

one of the most well-known forms of HPC solutions. 

Thousands of compute nodes work together to execute 

one or more tasks on a supercomputer. Parallel 

processing is the term for this. 

Machine Learning can be defined as “A branch of 

research that aims to understand and replicate intelligent 

behaviour using computational methods.” In simple 

words “Automate Intelligence in a Machine.” 

Machine Learning can be a high-performance 

computing challenge since it necessitates a lot of 

computation and data movement (IO and network). 

Machine learning needs computationally intensive 

training and lots of computational power help to enable 

speeding up the training cycles. And HPC is used to 

analyse these large amounts of datasets.  

 

Machine learning has been used to annotate a wide 

variety of genomic sequence components and is possibly 

most beneficial for the interpretation of big genomic 

data sets. 

II. LITERATURE SURVEY 

Proteogenomic data sets generate massive volumes of 

data, necessitating effective storage methods. For the 

sake of this presentation, we will use NGS data sets that 

can readily be expanded to MS data sets. Storage 

solutions are inefficient, thus specific compression 

methods have been suggested. However, the scalability 

of these specialised compression methods is limited, 

necessitating HPC solutions. 

 

Any large data challenge necessitates the use of high-

performance analytics. For the analysis of 

proteogenomic data sets, HPC techniques would be 

necessary. However, as has been demonstrated, tools 

designed using traditional parallel computing paradigms 

are prone to failure due to enormous data volumes. The 

next generation of HPC methods should be built with the 

data- and compute-intensive nature of proteogenomic 

problems in mind. For such analysis, HPC systems with 

techniques like data and dimensionality reduction, novel 

sampling, and sketching & streaming must be 

implemented keeping in mind their efficiency and 

feasibility. System Biology and Clinical labs usually do 

not have the resources to host big clusters and in such 

cases then, ubiquitous architectures like GPUs, TPUs 

and multi cores can prove extremely advantageous. 

 

The influence of HPC on proteogenomic was 

investigated in F. Saeed [1]. Proteogenomic research 

necessitates the generation and integration of data from 

high-throughput technologies such as Next Generation 

Sequencing (NGS) and Mass Spectrometers (MS), yet 

present methods have been shown to be insufficient. [1] 

highlighted three major areas in which HPC can have a 
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significant influence in the realm of large data 

proteogenomic: storage, transmission, and analytics. 

 

Libbrecht1 et al [2] discuss machine learning 

frameworks for analysing genome sequencing data sets 

as well as criteria for choosing an ML method. For 

accurate results, [2] stressed the need of theoretical and 

practical understanding of the relevant study application 

sector. As DNA sequencing and high-resolution 

imaging technologies become more common, new 

machine learning algorithms and experts will be in more 

demand. Liu et al [3] addressed how advances in DL and 

the use of CNN in sequence analysis had transformed 

genomics. L. Koumakis [4] discusses the growth of deep 

learning (DL) in genomics and how it surpasses 

conventional image processing approaches, [4] 

advocates integrating public and private datasets to 

improve prediction, but [3] stresses the necessity to 

analyse, identify, and create algorithms to automate 

feature extraction from big datasets. Deep Learning, 

according to Lu Zhang et al [5], is a better technique than 

Machine Learning. DL's capacity to accomplish difficult 

tasks on heterogeneous datasets without human input is 

highlighted. According to [5], finding large volumes of 

high-quality data is tough. 

 

Genomics data are usually in a logical order and are 

frequently referred to as biological languages. As a 

result, recurrent models can be used in a wide range of 

settings. Cao et al. [6] developed an LSTM-based 

Neural Machine Translation system that translates 

protein function prediction into a language translation 

problem by recognising protein sequences as Gene 

Ontology terms. DeepNano was proposed by Boza et al. 

[7] for base calling, DanQ was proposed by Quang and 

Xie [8] to quantify the function of non-coding DNA, 

Convolutional LSTM networks were proposed by 

Snderby et al. [9] to predict protein subcellular 

localization from protein sequences, and so on. A 

recently suggested seq-to-seq RNN that can translate a 

variable-length input sequence to another sequence or 

anticipate a fixed-size prediction is also intriguing for 

genomic research. 

 

Deep learning models outperform LASSO in analysing 

RNA-Seq gene expression profiles data, according to 

new research. In analysing RNA-Seq gene expression 

profiles data, Urda et al. [10] used a deep learning 

approach to surpass LASSO. Enhancer-promoter 

interactions are always predicted using non-sequence 

features from functional genomic signals. Singh et al. 

[11] developed the first deep learning approach for 

inferring enhancer-promoter interactions across the 

genome using just sequence-based information, as well 

as the locations of potential enhancers and promoters in 

a specific cell type. DeepFinder, a machine learning-

based approach, was shown to be less effective than 

theirs (Whalen et al.,) [12]. 

 

The process of turning pre-messenger RNA into mature 

messenger RNA (mRNA), which may be translated into 

a protein, is known as splicing. Jha et al. [13] used 

previously established BNN (Xiong et al.,) [14] and 

DNN (Leung et al.,) [15] models to construct integrated 

deep learning models for alternative splicing. Their 

algorithms can detect splicing regulators and their 

potential targets, as well as infer regulatory rules from 

the genomic sequence. 

III. METHODOLOGY 

Researchers can "read" the genetic code that regulates 

all of a living organism's behaviours thanks to the ability 

to analyze DNA. To put it into perspective, the pathway 

from DNA to RNA to Protein is the basic dogma of 

biology. Base pairs are made up of four basic units 

called nucleotides (A, C, G, and T): A couples with T, 

and C couples with G. Humans have 23 chromosomal 

pairs that are organised by DNA. 

 

Chromosomes are further divided into genes, which are 

DNA sequences that produce or encode proteins. The 

genome is the collection of genes that make up an 

organism. Humans have around 20,000 genes and 3 

billion base pairs. Despite the fact that protein coding is 

a key focus in genomics academia and practice, only 

around 2% of the human genome codes for protein. 

 

DNA is a four-letter code that contains all the 

information required to build a human body. A gene is a 

segment of DNA that carries the instructions for making 

a particular protein or group of proteins. On average, 

each of the human genome's 20,000 to 25,000 genes 

codes for three proteins. 

 

Genes, which are located on 23 pairs of chromosomes in 

the nucleus of a human cell, use enzymes and messenger 

molecules to control the creation of proteins. For 

example, an enzyme transfers information from a gene's 

DNA to a molecule known as messenger ribonucleic 

acid (mRNA).  

 

The mRNA goes from the nucleus to the cytoplasm, 

which is read by a ribosome, a molecular machine that 

uses the information to join small molecules known as 

amino acids in the right order to produce a specific 

protein. 

Proteins are responsible for developing of body 

structures such as organs and tissue, as well as chemical 
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process regulation and information transfer between 

cells. When a cell's DNA is mutated, it produces an 

abnormal protein, which can impair the body's normal 

functions and lead to illnesses like cancer. 

 

Almost every human ailment may be traced back to our 

DNA. Until recently, doctors could only examine the 

study of genes, or genetics, in cases of birth 

abnormalities and a small number of other disorders. 

These were diseases like sickle cell anaemia, which have 

relatively straightforward, predictable inheritance 

patterns since they are caused by a single gene mutation. 

 

Thanks to the massive amount of data about human 

DNA created by the Human Genome Project and other 

genomic studies, scientists and doctors now have more 

sophisticated tools to examine the impact that multiple 

genetic variables working together and with the 

environment play in far more complicated illnesses. The 

majority of health problems in the United States include 

cancer, diabetes, and cardiovascular disease. Genome-

based research is resulting in improved diagnoses, more 

effective therapeutic techniques, evidence-based ways 

to demonstrate clinical effectiveness, and better 

decision-making tools for patients and clinicians. In the 

end, treatments will almost probably be tailored to a 

patient's unique genetic makeup. As a result, genetics' 

role in health care is changing drastically, and the age of 

genomic medicine is quickly coming. 

 

Now that we've established what genomics, HPC, and 

machine learning are, let's look at where they intersect. 

Before we accomplish that, we would want to mention 

or emphasise a few issues in genomics that researchers 

from Space-Time Insight, Inc. have identified: 

 extracting the location and structure of genes  

 identifying regulatory elements 

 identifying non-coding RNA genes 

 gene function prediction  

 RNA secondary structure prediction  

 

These are the few challenges identified and the key 

solution to these problems is to involve ML algorithms. 

ML has a wide range of applications in genomics right 

now, and the field's reach is still expanding. ML is now 

being utilised in applications such as classifying if 

something is a gene or not, genome sequencing, gene 

editing, validating DNA sequence strings, and many 

more. We know that the amount of data generated and 

required for genomic research is enormous. To be able 

to process and store that kind of data, we require 

extremely high-performance algorithm-based software 

and hardware. 

 

A brief study of which ML algorithms are used in what 

genomic processes is summarized in Table 1. 

Table I: Application of Machine Learning in Genomics 

[21] 

Techniques in ML Use 

PyDNA Library DNA/RNA/Protein 

Preprocessing 

Genomic Data 

Classification 

NumPy Arrays DNA Sequence String 

Processing 

NLP Bag of Words DNA Sequence String 

Processing 

Multinomial Naive & 

Multi-Layer Perceptrons 

Classification of DNA 

data 

Convolutional Neural 

Networks 

Classification of DNA 

data 

Long Short-Term 

Memory 

Classification of DNA 

data 

Recurrent Neural 

Networks 

DNA Sequencing 

Naive Bayes and 

Bayseian Neural 

Networks 

Gene Expression 

Regulation - Splicing 

Long Short-Term 

Memory 

Structural Classification 

of Proteins – Protein 

Homology 

Residual Neural 

Networks 

Protein Contact 

Prediction from Amino 

Acid Sequence 

Convolutional Neural 

Networks 

Prediction of Functional 

Activities of DNA 

Label Encoding, K-Mer 

Counting, One Hot 

Encoding 

Encoding DNA 

Sequences 

Decision Trees Location of Protein 

Coding Regions 

Support Vector 

Machines 

Identification of 

functional RNA genes 

 

With any DNA sequence length, traditional ML 

methods (Linear and Logistics Regressions, Decision 

Trees, Support Vector Machines, Random Forest, 

Boosting Algorithms, Bayesian Network, and so on) 

may be utilised. Modern ANN algorithms, such as CNN 

and RNN, need that the DNA sequence length in each 

dataset column be consistent. 

While all these are currently being used and explored on 

a more comprehensive manner, there is a lot more scope 

of expansion in this domain. A few future applications 

of ML in genomics [17], [18], [19], [20], [21] are:  
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Precision Medicine – The diagnosis and management of 

chronic illnesses such as cancer are highly complicated. 

Doctors and scientists are working on technology that 

will allow them to not only detect which type of DNA 

and mutations are present in the genome, but also to cut 

it off from the affected areas for a more effective 

therapy. AI-based algorithms can help to make 

treatment procedures more exact, so that such illnesses 

can not only be identified, but also treated individually 

based on a person's DNA. The current method, which is 

one-size-fits-all, may not be successful enough. As a 

result, this is one area where machine learning in 

genomics can be particularly beneficial. 

 

Precision medicine and genomics go hand in hand. 

Personalized medicine is a patient-centred approach to 

care that integrates genetics, behaviour, and the 

environment to create a patient- or population-specific 

therapeutic intervention rather than a one-size-fits-all 

strategy, with a market size predicted to reach $87 

billion by 2023. A client looking for a new blood 

transfusion would be paired to a donor who has the same 

blood type as them rather than a random donor to 

decrease the chance of problems. 

 

Pharmacogenomics - In case of major outbreaks, like 

for example, the recent most COVID-19 pandemic, 

having population specific vaccinations is of utmost 

importance. Pharmacogenomics, we can say, is a natural 

progression of precision medicine. The population 

specific course of treatment ideology of course has a lot 

of its own hurdles like determining the right genetic set, 

finding genetic links for complex conditions and many 

more. 

 

The forever increasing genomic data because of 

increasing population means that analysing all that data 

can be a daunting task. Supervised Machine Learning 

methods may offer a new approach for analysis, one that 

is particularly suitable for inferring from high-

dimensional data produced by an unknown or 

imprecisely specified model. 

 

Next Generation Breeding - Food production is majorly 

affected by plant diseases and unfavourable 

environmental conditions. For developing nations, this 

can be a very serious issue to deal with as they lead to 

losses. ML plays an integral part in the process of 

analysing phenotypes and providing relevant 

information or patterns. ML algorithms, on the other 

hand, aren't just for detecting variations from long-read 

methods; they may also be utilised by population 

genetics researchers. Indeed, supervised machine 

learning has been used to investigate recombination 

rates in a target genome.  

 

ML applications aimed at soil health using proprietary 

ML models to identify the factors responsible for 

driving crop outcomes. The future of ML will be 

focused on how to cope with numerous species at the 

same time. Deep-learning methods may be able to 

handle comparative genomics investigations or 

information transfer from a model plant to a crop of 

interest. 

 

Big Data Management - Handling NGS and MS data 

(Two major sources of genomic data production) 

requires high storage spaces and innovative 

computational capacities for the management of big 

data. Several repositories have been established in 

recent years to solve this problem. However, the amount 

of data created by NGS is quickly increasing (from 

hundreds of terabytes to petabytes in recent years), 

making storage a key problem in data computing. 

 

The majority of NGS analysis software is command-line 

based, posing accessibility issues for many biologists, 

and making it difficult to choose the best 

performing/most suitable tools. In this context, ML 

methods, defined as a computer's ability to learn and 

interpret data without being pre-programmed, have the 

potential to improve accessibility. 

 

Indeed, in addition to predictive analysis, Data 

classification and cataloguing algorithms can be used to 

incorporate ML in systems that can execute and handle 

data automatically.  

 

Different types of data, ranging from huge datasets to 

individual tables, may be categorised in a variety of 

ways to meet the needs of users, allowing for stronger 

cross-category analytics correlations through identifier-

driven searches and queries.  

 

The potentialities of ML can be applied to give a better 

integration of data retrieved from genomics and 

phenomics, which will accelerate the process of 

developing prediction models.  

 

A few barriers to applying ML approaches in -omics 

domain:  

Dimensionality – The genomic data produced is 

observed to have a greater number of variables and small 

number of samples. Hence, to have the perfect 

standardized template for reference, a lot of 

preprocessing and harmonization is required.  
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The Classification Problem - The majority of DL and 

ML models for genomics are used to solve classification 

problems, such as distinguishing between disease and 

healthy samples. It is common knowledge that genomics 

trials and data gathered from different sources are 

fundamentally class imbalanced, and ML/DL models 

cannot be accurate unless enough instances per class 

have been fitted.  

 

Heterogeneous Data issues - Since we deal with 

subgroups of the population, the data in most genomic 

applications is heterogeneous. In the system's biology 

level, genomic data includes I gene or non-coding 

transcript sequencing, (ii) quantitative gene expression 

profiles, (iii) gene variations, (iv) genome alternations, 

and (v) gene interactions. The covariates between the 

underling interdependencies among these 

heterogeneous data are one of the obstacles to 

integrating different data. There are numerous data tools 

available, but none are well structured, making model 

training extremely difficult. 

 

WHY ARE THERE ONLY A FEW PEOPLE 

WORKING ON APPLYING ML/DL IN 

GENOMICS? 

How do you define few? How many are now employed, 

and how many would suffice for you? 

 

Most individuals in genomics, I believe, use some form 

of machine learning. PCA, for example, is a type of 

machine learning. Many genomics projects include a 

PCA step as a QC measure. 

 

On the other hand, as shown in Fig 1 have you seen the 

scikit-learn Choosing the right estimator chart? [16] 

 

See where it says ">50 samples" in the first step? If you 

work in genomics, it is almost impossible to find a 

project with 50 samples. By that notion, machine 

learning cannot be used in most genomics research. 

 
Fig. 1 scikit-learn algorithm cheat sheet

IV. CONCLUSION 

To summarize, machine learning is a huge and difficult 

subject. Algorithms can be developed that allow for 

considerably more precise data analysis than many other 

approaches now available.  

 

The type of machine learning approach chosen will be 

determined by the nature of the data provided and the 

goal of the researchers. 

 

In the future, further research into machine learning and 

artificial intelligence will lead to more precise 

techniques to evaluate genetic data, resulting in 

additional discoveries. ML is being used and evaluated 

in a variety of genomic processes right now, but none of 

them have been clinically verified. As a result, we are 

still a long way from having DL models for -omics data 

that can be employed in precision medicine. 
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To improve the function of ML/DL genomics in 

prediction and prognosis, more efforts should be made 

to evaluate and integrate datasets (private and public). 

To cope with -omics-like data, more effort must be done 

in the HPC area, where methods must be both 

computational and data heavy. 

 

In the future, machine learning models are projected to 

be widely used across the many -omics disciplines, 

increasing their integration and allowing for the 

resolution of important biological issues. This process 

will necessitate not just computing infrastructures and 

data analysis abilities, but also a higher level of 

sensitivity and an open mind when it comes to 

innovative models that may be used in many scientific 

fields. This will be aided through information exchange 

and multidisciplinary projects. 

 

While there is a lot of potential, making the case for 

precision medicine is still a long way off, with many 

physicians wanting more clarity on clinical utility and 

insurance companies not seeing it as a need. 

 

As a result, machine learning's data interpretation 

capabilities will need to be supplemented by education 

and clear explanations of the technology's utility and 

worth. 

 

Pharmacogenomics is one of the most prominent 

developing uses of machine learning in genomics, 

although it is only one example of many possible future 

applications. However, with insufficient data on results, 

only time will tell which areas will profit the most from 

AI investments. 
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