
UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 123

A Brief Review of Micro-frontends
Y.R. Prajwal1, Jainil Viren Parekh2 and Dr. Rajashree Shettar3

1,2,3 Department of Computer Science, R.V. College of Engineering, Bengaluru, India

Email: 1prajwalyr.cs17@rvce.edu.in, 2jainilvparekhcs17@rvce.edu.in and 3rajashreeshettar@rvce.edu.in

Abstract— In this paper, a brief review of micro-

frontends is presented. The paper discusses the idea

behind the micro-frontends architecture and depicts that

it is an extension of microservices to the frontend.

Micro-frontends solve the problems caused by existing

monolithic frontends. The paper discusses the various

approaches to compose micro-frontends and gives a

review on the existing systems that use micro-frontends.

The benefits and drawbacks of micro-frontends are also

presented. Micro-frontends have a great potential in

developing frontend software if the core ideas are

implemented effectively.

Keywords— Micro-frontends, Microservices, Frontend,

Web Application.

INTRODUCTION

Web applications are generally split into two parts:

back-end, that provides APIs to perform server-side

operations, and front-end, that provides a user-interface.

Micro-Frontends is a term that was coined by

ThoughtWorks Technology Radar in 2016 [1]. The

concept of micro frontends is an extension of the micro

services used in backend. Nowadays single page

applications (SPA) that runs on top of a micro service

architecture are very popular along with server-side

rendering applications (SSR) and web pages formed by

combining static HTML pages.

Although these frameworks are acceptable options to

build feature-rich powerful web applications, they tend

to be monolithic frontends thus increasing the size of

client-side application.

This limits the scalability of development of the

application by multiple teams. Micro-Frontends

overcome this problem by decomposing the front-end

into different features owned by independent teams such

that each team has a separate area of business that the

team is proficient in. Several industries like DAZN,

Ikea, New Relic, SAP and others have adopted micro-

frontends [2].

THE IDEA

In recent years, usage of microservices is very popular

and has been researched in the field of information

science. A traditional single web application system

based on single architecture has

Fig.1 Comparison of traditional single page

application with single service architecture(left)

Microservices architecture (right)

various modules whose dependencies may not be clear.

Furthermore, even a minor modification done to the

project requires redeploying the entire project and since

the project size will be significantly large this takes a

long time.

Microservices architecture relies on a collection of

loosely coupled smaller business modules known as

services. The services communicate with each other

through language independent APIs.

Each service can be developed, tested and deployed

independently [3] thus allowing multiple features to be

developed in parallel.

There is no one right way of developing software and

engineers are constantly looking for new methods of

designing software.

Frontend engineers have a few architectural options like

SPA, SSR or combining static web pages. However, all

these architectures cause the frontends to become

monoliths.

This greatly rises the complexity of the project and

adding new features might cause unwanted effects on

other existing features.

The concept of microservices has many benefits and

hence then same concept can be extended to frontends

to solve this problem of monolithic frontends.

mailto:prajwalyr.cs17@rvce.edu.in
mailto:jainilvparekhcs17@rvce.edu.in
mailto:rajashreeshettar@rvce.edu.in

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 124

Fig. 2 Concept of microservices extended to form the

micro-frontends architecture

The core ideas of micro-frontends are summarized as

follows [4]:

 Technology agnostic: Every team must be able to

choose and upgrade their technology stack without

having to cooperate with other teams.

Implementation details can be hidden by custom

elements whilst delivering a neutral interface to

others

 Code isolation: The teams should build independent

apps which are self-contained without relying on

global variables or shared states. Runtimes should

not be shared across teams

 Naming conventions: In cases where isolation is not

possible, agreeing on naming conventions for CSS,

events, namespace and cookies helps in avoiding

collision and resolving ownership.

 Use native browser features: Browser events are

preferred over custom APIs for communication

 Resilient site: The feature developed should also be

useful in the cases where JavaScript fails. Universal

rendering and progressive enhancement can be used

to improve the performance

COMPOSITION OF MICRO-FRONTENDS

There are two available options to identify micro-

frontends: horizontal split and, vertical split [5]. With

horizontal split, many smaller frontend applications are

loaded onto the same webpage which requires many

teams to collaborate their efforts as every team will be

focusing on a part of the view.

In case of vertical split, every team is in charge for a

business domain and Domain Driven Design (DDD)

principle applies.

The composition of micro-frontends can have various

approaches:

A. Composition with Ajax

The contents of different micro-frontends can be

integrated to a single document by loading them using

Ajax. A deeper Ajax integration is good for search

engine compatibility, accessibility and performance.

However, CSS collisions are a possibility as the Ajax

integration puts all the fragments into a single document.

This can be avoided by agreeing on naming conventions

or introducing team namespaces. The contents of

multiple applications can be routed through a single

frontend proxy that serves all the content via a unified

domain.

B. Server-side composition

In server-side composition, the backend server will

compose the view by fetching all the micro-frontends

and assemble the final webpage. This helps in achieving

good first-page load speeds which are not possible with

client-side composition. This technique is helpful when

building micro-frontends that are based on progressive

enhancement principles.

A Content Delivery Network (CDN) can be used to

serve cacheable pages. Server-side composition used by

e-commerce companies like IKEA, Zolando and

Amazon.

C. Client-side composition

Client-side rendering frameworks like React, AngularJS

and Vue have become popular as they provide dynamic

routing and a better user-interface. Micro-frontends are

wrapped as web components to load on the browser.

Web components are a collection of various

technologies including custom elements, HTML

templates, Shadow DOM and HTML imports.

Web components allow the creation of technology

agnostic frontends which can be loaded by the browser.

Shadow DOM reduces the risk of CSS collisions and

also protects against global styles leaking in.

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 125

EXISTING SYSTEMS

Micro-frontends are becoming popular and the

applications of micro-frontends in existing systems is

mentioned below:

1. Micro-frontends along with microservices concept

is applied to design a content management system.

Mooa, micro-frontend framework for Angular is

used. It supports having two or more Angular

applications out of which one is used as a main

project that loads all other applications [6].

2. Microservice (MS) architecture combined with

micro-frontends is used to implement a prototype of

web-based configurator for robot-based automation

tools. The prototype clarifies that new

functionalities like collaborative multiuser

configuration are enabled. It also shows that it

contributes to better development and simpler

deployment using the principle of divide and

conquer [7].

3. Micro-frontends also find application in

educational management systems. Micro-frontends

solutions combined with service-oriented

architecture is applied to new generation of

graduate information platform of East China

Normal University. It is verified that the micro-

frontends architecture can adjust to the future

requirements of educational management

information systems [8].

4. A modular architecture design for industrial Human

Computer Interface (HMI) is based on the micro-

frontends to develop web applications. It facilitates

engineers to form an HMI from micro-frontends

where each micro-frontend is integrated

throughout, from user interface to its data

acquisition [9].

5. Micro-frontends concept is used for the

development of an education hub system. The

system gathers online courses from different online

course providers to serve as a single entry-point. It

provides a search engine for users to locate a course

that is most suitable to their requirements [10].

6. A Progressive Web Application (PWA) is designed

based on micro-frontends and microservices for

aiding the user in seamless attainment of geospatial

data related to IoT [11].

7. A platform is designed to offer assistance in the

operations involved in production of micro-

frontends. It allows any producer to publish a

micro-frontend to the outside world and any

consumer to utilize them to satisfy his/her own

requirements [12].

BENEFITS

A. Team Independence

Micro-frontends aim in isolating teams and are

incredible tools for helping the teams work

independently. Each team has full autonomy of a

vertical slice of the application and can focus on

specializing in that domain.

B. Code organization

Effective partitioning of the project into micro-frontends

also helps in better code organization of the project.

Every micro-frontend focuses on a smaller part of the

application.

C. Release Independence

The micro-frontends architecture enables faster feature

development by following the share nothing

architecture. Parts of the project can be released

independently.

D. Reduced surface testing and faster builds

Smaller frontends and releases imply that the surface of

regression testing is reduced. This also implies that the

build time is reduced. However, in practical applications

this may not be achieved effectively [13].

E. Fault isolation

One of the important advantages of micro-frontends

over monoliths is that in case of any error, the entire

application need not be turned down. It is possible to

detect in which module the error has occurred, and an

appropriate fix can be made to that specific module.

F. Technology Agnostic

One of the main ideas of micro-frontends architecture is

that it doesn’t depend on the underlying frameworks

used to develop the micro-frontends. This adds the

benefit of incorporating different technology stacks for

different micro-frontends based on the existing skillset.

DRAWBACKS

A. Redundancy

The general aim in software development is to minimize

code redundancy. However, as micro-frontends

encompass multiple independent teams developing their

stacks parallelly, it might introduce a lot of redundancy

in JavaScript and CSS code. This unnecessarily

increases the size of code.

B. Workflows that might cross boundaries

It will be difficult to create and design workflows that

cross the boundaries between micro-frontends. The

built-in navigation and routing cannot be utilized as the

different micro-frontends might use different

technology stacks and thus requiring custom navigation.

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 126

C. Communication

It is against the principles of micro-frontends to

communicate between two micro-frontends. This might

be problematic for existing features in the system.

D. Risk of Code divergence

The code might start to diverge to a significant extent

while breaking down the project into different micro-

frontends and end up with different projects altogether.

E. Performance issues

The first-page loading speed is significantly higher

compared to other approaches. This latency might affect

user interface. However, if the resources are cached the

performance is better than other approaches. The

performance analysis and comparison of micro-

frontends with monolithic system are discussed in [14].

CONCLUSION

The micro-frontends concept solves the problems

caused by frontend monoliths by extending the concept

of microservices to frontends. Although there are a few

drawbacks, micro-frontends have significant benefits

and hence has great potential for frontend development.

It is becoming popular and is adopted by many

developers. The micro-frontends architecture is good for

medium to large projects. Micro-frontends are not a

good fit when the number of developers available is very

small. The concept of micro-frontends can also be

extended to native mobile applications but are proven to

be beneficial for web applications. Micro-frontends are

a solution for scaling development.

REFERENCES

[1] "Micro frontends," ThoughtWorks, November

2016. [Online]. Available:

https://www.thoughtworks.com/radar/techniques/

micro-frontends. [Accessed June 2021].

[2] M. Geers, Microfrontends in Action, Manning

Publications, 2020.

[3] L. Chen, "Microservices: architecting for

continuous delivery and DevOps," in 2018 IEEE

International conference on software architecture

(ICSA), 2018.

[4] G. Michael. [Online]. Available: https://micro-

frontends.org/. [Accessed June 2021].

[5] S. Peltonen, L. Mezzalira and D. Taibi,

"Motivations, benefits, and issues for adopting

Micro-Frontends: A Multivocal Literature

Review," Information and Software Technology, p.

106571, 2021.

[6] C. Yang, C. Liu and Z. Su, "Research and

Application of Micro Frontends," IOP Conference

Series: Materials Science and Engineering, vol.

490, p. 062082, 2019.

[7] E. Schäffer, A. Mayr, J. Fuchs, M. Sjarov, J.

Vorndran and J. Franke, "Microservice-based

architecture for engineering tools enabling a

collaborative multi-user configuration of robot-

based automation solutions," Procedia CIRP, vol.

86, pp. 86--91, 2019.

[8] D. Wang, D. Yang, H. Zhou, Y. Wang, D. Hong,

Q. Dong and S. Song, "A Novel Application of

Educational Management Information System

based on Micro Frontends," Procedia Computer

Science, vol. 176, pp. 1567-1576, 2020.

[9] M. Shakil and A. Zoitl, "Towards a Modular

Architecture for Industrial HMIs," in 2020 25th

IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA),

2020.

[10] A. Pavlenko, N. Askarbekuly, S. Megha and M.

Mazzara, "Micro-frontends: application of

microservices to web front-ends," Journal of

Internet Services and Information Security (JISIS),

vol. 10, no. 2, pp. 59-66, 2020.

[11] M. Mena, A. Corral, L. Iribarne and J. Criado, "A

Progressive Web Application Based on

Microservices Combining Geospatial Data and the

Internet of Things," IEEE Access, vol. 7, pp.

104577-104590, 2019.

[12] P. Y. Tilak, V. Yadav, S. D. Dharmendra and N.

Bolloju, "A platform for enhancing application

developer productivity using microservices and

micro-frontends," in 2020 IEEE-HYDCON, 2020.

[13] L. Steven, "Problems with Micro-frontends,"

March 2020. [Online]. Available:

https://medium.com/swlh/problems-with-micro-

frontends-8a8fc32a7d58. [Accessed June 2021].

[14] M. Kroiß, "From Backend to Frontend-Case study

on adopting Micro Frontends from a Single Page

ERP Application monolith," 2021.

