
UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 105

API Validation Testing Using Karate
Shashwati Jha1, Srinivasula Katigari2, S.B. Prapulla3 and Ramakanth Kumar4

1Student, Department of Computer Science, RV College of Engineering, India
2Applications Tech Lead, LBrands Mast Global, India

3Assistant Professor, Department of Computer Science, RV College of Engineering, India
4 Professor & HOD, Department of Computer Science, RV College of Engineering, Bangalore, India

Email: 1shashwatijha.cs17@rvce.edu.in

Abstract — Functional Automation is a widely adopted

domain in the evergreen field of testing and is poised to

grow at an average growth rate of more than 15% from

2020 to 2027. As testing is the most time and cost

intensive phase of a project, there is an active effort to

develop a framework which can reduce associated costs

and increase time efficiency of both, development, and

deployment. Karate is one such open source automation

framework developed in 2017 which can be used for

API testing, performance testing and UI automation. It

combines the advantages of a neutral language that's

easy to understand by even a non-developer with

powerful assertions and inbuilt multithreading. In this

paper, we detail the development of a Karate framework

for API testing and analyze its performance in sequential

and parallel execution and compare and contrast Karate

with the popular Cucumber BDD (Behavior Driven

Development) framework.

Keywords— API (Application Programming Interface),

Automation Testing, Cucumber, Feature File,

Functional Validation, Karate, Scenario.

I. INTRODUCTION

In an Agile Project Development Environment, testing

of the project at hand to validate its functionality,

performance and stability is a necessary albeit time

consuming task prone to Budgetary and Time

constraints as well as human operator error. Successive

development cycles necessitate execution of similar

testcases and performing validations on common APIs

(Application Programming Interface). Using a test

automation framework along with DevOps Tools, it's

possible to Script a test suite and execute it at regular

timeframes.

With a growing adoption of microservice architecture,

the development and use of API’s are more

commonplace. API’s or Application Programming

Interfaces serve as an interface between a backend data

store such as a database or cloud and a front-end

software where data is requested and manipulated by an

end-user. To assure system reliability and functionality,

we need to ensure an API works as per requirement and

does not send invalid or corrupted data to the user.

In this paper, we detail the development of an API

testing framework using Karate Domain Specific

Language (DSL). The organization of this paper is as

follows; In Section 3, relevant information about the

framework is provided for clearer understanding. In

section 4, an overview of API automation testing and

Karate DSL is supplied; Section 5 provides system

architecture followed by section 6 which describes the

functioning of each module in system architecture.

Section 7 details the methodology of the framework; In

Section 8, the results and analysis of framework is

detailed and Finally, Section 9 carries the conclusion.

The following section provides a brief description of

previous work in the domain of automation testing.

II. STATE OF ART

In the paper [1] it is conveyed that while manual testing

had helped to refine the requirements as per user stories,

one aspect it didn’t perform well in was regression

testing as Manual testing via a graphical user interface

also missed these bugs as it was conducted for newer

features and testing regressively was neglected. Here,

the process of automating user stories was also

documented, and a cost vs effort estimation was made

for automation.

Automation testing is adopted by industries as testing is

a cost and resource intensive process. In The research

article [2] the authors discuss proposed software’s time

to market, by measuring cost of project in terms of the

COCOMO model (Constructive Cost Model) cost in

terms of effort per person/month and as a majority of

software’s cost lies in testing, automation of such tests

can give good return in the long term. Ramler et al in the

paper [3] documented the benefits of automation testing.

Similar to paper [2], automation and manual testing

were compared to reduce costs and a cost-based model

was discussed to reduce overall costs of development.

These Proposed improvements over time have

persuaded organizations to further employ automation.

To enable automation, Various tools exist with most

popular one being Cucumber Framework.

In the article [4], the Authors discuss a prosed solution

of automation using Cucumber and Junit, in back end

mailto:shashwatijha.cs17@rvce.edu.in

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 106

automation which explores the viability of Cucumber

framework as an automation tool. As The project aimed

to use Karate which has the feature of multithreading to

speed up execution, in the research [5] the author details

a method to execute A BDD framework in parallel by

using selenium grid, which allows flexibility in

choosing tests to execute, and reducing batch processing

time. It utilizes the Cucumber framework to make test

cases readable by even a domain expert who may not be

technically skilled.

In the paper [6] the authors have discussed a way to

implement performance tests on a microservice, where

the aim was to develop a microservice which be

integrated without difficulty making minor changes to

application code.

In [7], the author discusses the various tools available

for automation testing such as Selenium, Test Complete

etc. thus providing a good overview of the advantages

of each tool. Finally, Test automation has made

significant process over time from using record and play

techniques to now using tools such as Cucumber and

Junit that support developing automation scripts at code

level, the paper [8] highlights these improvements and

also discusses a technique to make automation testing

intelligent via the use of AI to simulate rules and create

a knowledge base of an agent.

Automation testing has wide scope and reduces costs

while significantly increasing performance. The studied

papers reflect the innovations to this domain and provide

an insight into various techniques to carry out

automation. However, no work has been done to carry

out a review of Automation processes using Karate

DSL, a newer tool which can reduce development time

while still maintaining powerful assertion capabilities of

java.

III. RELEVANT INFORMATION

Cucumber: Cucumber is a Behavior Driven

Development (BDD) tool which utilizes natural

language syntax to create test scripts that are easy for a

product owner or business analyst to understand. Scripts

are created in an easy given, when, then syntax which

follows a natural language. However, for most step

definitions, Back end code must be supplied in Java to

automate these steps.

Karate: Karate is bult on top of the cucumber

framework and this has the language neutrality syntax of

cucumber, however it does not require any step

definitions to be written in java unlike cucumber and has

ease of compatibility with third party software. Which

makes using this framework to do API validation tests

simple, powerful, and flexible.

Maven: Maven is often used from the command line and

it serves to make the building process easier by shielding

developers from knowing about underlying mechanism.

It also provides runtime information about the build,

thus increasing quality by creating change logs, creating

reports, and installing dependencies. Dependencies are

specified in a pom.xml file which is built before

execution.

API (Application Programming Interface): API’s are

software tools that are used to pass messages between

two applications and to interact with these systems.

API status code: Every API upon execution returns a

Status code. Status codes in the range 200-299 depict a

successful request. Status codes in 400-499 and 500-599

represent client and server-side errors respectively.

IV. OVERVIEW OF API TESTING USING

KARATE

APIs or Endpoints serve as a message transfer link

between back-end and front-end systems. When using

APIs over a server, we need to ensure that the API is

functioning as per contract.

This entails checking an APIs return status which must

be 200 for success and between the range of 400-500 for

Failure. Also, we need to ensure that the response we

obtain from the API in a positive scenario must always

match a contract.

A contract is a binding schema of the API that must

always be followed. For example, if we specify that in a

response body with fields Name, ID, and Date, that the

name and ID must be in string format, and the Date must

be within a specified range and that the ID is a

mandatory field.

Then each response must contain an ID field that has a

string format, and whenever name and Date are passed,

they too must be passed in the specified format.

Organizations need to regularly check the performance

and functionality of APIs managed by them.

Using Manual testing, it would be cumbersome to verify

and validate multiple endpoints with each having

complex multi-lined responses. Here, automation testing

serves as the best approach to testing.

Karate is a modern framework that has the capability to

assert complex schema matching and perform Endpoint

testing in a short span of time using multiple threads.

Karate has a simple-to-use syntax that allows developers

to write test cases faster.

This speedup coupled with the speedup in execution due

to parallelism makes Karate a lightweight framework to

deploy cases over a cloud regularly.

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 107

V. SYSTEM DESIGN

Fig.1: System Design of Karate framework

Figure 1 illustrates the system design of a Karate

Framework for API Test Automation; the following

section describes the functions of each module.

VI. MODULE DESCRIPTION

Fig.2: Sample code snippet for API Validation

using Karate syntax

1. End User/ Automated Execution: An end user or a

pipeline starts executing the program by

specifying tags and number of threads. Tags depict

the function of the scenario. These tags can later

be used to selectively order a scenario or feature

file for execution.

2. Page Object Model: The page Object model file,

which contains all the dependencies required by

the program, installs these dependencies, and

equips local system for execution.

3. Test runner: Test Runner is a java file that is akin

to a main file. It is used to specify execution order

using Hooks. It calls the feature file or group of

feature files as specified by tags, and once

execution has returned from feature files, it calls

the report generator using a ‘@after’ hook which

generates the reports into the target folder.

4. Feature Files: Feature files consist of multiple

scenarios. These are used to combine those

scenarios of positive, negative and contract

validation which call a common API. These also

contain some background steps which are

executed before each scenario.

5. Scenarios: Scenarios contain steps in Given,

when, then format as shown in Fig. 2. These are of

positive, negative and contract valuation format.

6. API gateway: API gateway serves as an interface

between a client store and the front-end system at

hand. It transfers requests to and from a data store

or a server.

7. Target Reports: When Execution has completed,

Reports are generated by test runner which are

stored in target. Reports are created in various

formats, the most common ones being Docker

Images, Cucumber reports and Surefire reports.

Docker Images contain code, dependencies etc.

and are used to make an executable image,

Cucumber reports and Surefire reports contain

documentation of each step.

8. Docker Images: Docker creates an image of the

entire project and is useful for execution over

integrated systems and cloud systems.

9. Additionally, a Maven jar file is created on

execution of jar file which is used to reduce code

duplication.

VII. METHODOLOGY

Fig.3 Flow of Development and Execution of

Karate Framework

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 108

Initially framework dependencies are identified and a

Maven POM.xml (Page Object Model) is set up. This

contains all dependencies used by the system. Upon

execution the POM.xml file will execute first and will

install any dependencies and configurations required by

the program.

Post Setup of the Karate framework the APIs were

identified and chosen. Similar endpoints which have a

common access pattern form an API collection and one

such collection was chosen for the project.

For Each API within the collection a feature file was

created. Each feature file should contain positive

validation scenarios, negative validation scenarios and a

schema validation scenario as well as background

information.

The background information will contain common

information that is executed before each scenario. For

the positive validation scenarios, the application will

match a 200-status code when the correct configurations

of path and query parameters and payload are sent. In

the negative validation scenario, the scenario will match

a status code in the range of 400 to 500 on passing wrong

or empty parameters.

However, if a 200-status code is returned, the program

must check if the response payload is empty. This will

also constitute a negative validation case. In the schema

validation case, the program matches the obtained

responses schema against the required schema known as

contract. For better documentation and understanding,

both scenario and feature files are named according to

their purpose.

Also, tags can be given to each scenario and feature file

which specify the scenarios function and make

execution easier. Tag ‘@Timezone’ has been shown in

figure 2, the tag describes the scenario which is carrying

out positive validation for the world time API.

Finally, upon development of feature files a

TestRunner.java file is created This file serves as a

central point of execution. It is in this file that the user

can specify which feature file or scenario must be run or

not run by using tags. A user can also specify a

collection of feature files to be run.

For example, if the user wishes to not execute any

scenario marked with ‘@ignore’, they must specify

‘~@ignore’ in the TestRunner.java. Tags follow logical

operators hence when tags are supplied in the following

pattern:

@KarateOptions(tags =

{“@Test1,@test2”,”@Positive”,"~@ignore"})

Follows the logical sequence of:

((@Test1 OR @Test2) AND @Positive AND NOT

@ignore)

 “@Test1,@Test2”: Any combination of tags within

double quotes (“*”)run in OR configuration. That

means any scenario with either tag @Test1 or

@Test2 will be executed.

 “@Test1,@Test2”,”@Positive”:Any combina-tion

of tags separated by double quotes and a comma(,)

run in AND configuration. Here, any scenario

marked with @Test1 OR @Test2 AND @positive

will be run.

 "~@ignore": Any scenario having associated

~(NOT) Tag will Not be executed.

Further, Parallelism is inbuilt into Karate and the

number of tags can be specified ranging from 1 which is

sequential execution to multiple.

A limit on the number of threads will be user’s system

processor and ability to simultaneously multithread.

Other software and hardware factors will also limit the

degree of parallelism.

Upon execution, Target Reports are built in Cucumber

and Surefire formats. These reports detail each step-in

execution, the time taken to execute each step and if any

step has passed, failed or been skipped.

They also show the response that was received after

execution of an API.

VIII. RESULTS AND ANALYSIS

Table. I: Tabular data of Time vs Feature files

No. of

feature

files

Time (sec) to Complete Execution

Threads

= 1

Threads

= 2

Threads

= 4

Threads

= 6

1 10.97 6.8 5.49 6.54

2 14.42 8.83 6.67 7.01

3 18.83 11.09 8.76 7.64

5 30.36 18.25 11.76 10.58

10 58.12 31.78 18.38 14.57

20 103.75 52.1 29.6 20.65

40 199.26 100.11 53.29 36.68

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 109

Chart.1: Linear graph of No. of Feature Files vs.

Time(sec)

Chart.2: Log10 Graph of No. of Feature Files vs.

Time(sec)

The Framework was run with varying number of Feature

files and Threads. The following section contains the

data used to execute and its time performance.

Chart.1 describes a graph plotted with data from

Table.1. It is Observed that utilizing 2 threads decreases

the run time by half of using 1 thread. It is also observed

that using 6 threads on a 4-core system (intel i5) resulted

in a 5-factor speedup.

Chart.2 Describes the same data but with logarithmic

scale. Here. Difference in execution of 1 feature file can

be visualized. Running 1 feature file with 6 threads took

more time that running 1 feature file with 4 threads. This

is due to added latency by 2 extra threads on a 4-core

system.

Some notable advantages of Karate framework exist

over Cucumber Framework; these have been detailed

below:

 Parallelism: Karate supported inbuilt parallelism

whereas Cucumber framework requires 3rd party

tools to support threading. Overall, Karate is a

flexible and lightweight tool to implement faster

development

 Step Definition: Karate requires step definitions

only in neutral language whereas Cucumber

supports neutral language but requires

corresponding steps to be written in Java. This

reduces code complexity and development time.

 Assertions: To match schemas, Karate has powerful

inbuilt assertion which can match complex

schemas. In cucumber, assertions have to be done

through parsing ‘*.yaml’ and ‘*.json’ files.

IX. CONCLUSIONS

The primary motive for automation testing is to reduce

time in and increase software output. Both these goals

were achieved as well as increasing software quality and

reliability by automating tests that evaluate these

services.

In Conclusion, Karate DSL demonstrated good

performance when analyzed with varying number of test

cases. The reports Karate generated contain execution

details of each step as well as the overall percentage of

test cases that have passed vs failed which helps in

gauging a quick idea of how many services are up and

running. it also had the advantage of being easy to use

which allowed us to rapidly automate and test each

endpoints functionality and Schema and hence

decreases both, test production time as well as test

deployment time.

REFERENCES

[1] C. Klammer and R. Ramler, "A Journey from

Manual Testing to Automated Test Generation in an

Industry Project," 2017 IEEE International

Conference on Software Quality, Reliability and

Security Companion (QRS-C), 2017, pp. 591-592,

doi: 10.1109/QRS-C.2017.108.

[2] Divya Kumar, K.K. Mishra, “The Impacts of Test

Automation on Software's Cost, Quality and Time

to Market”, Procedia Computer Science, Volume

79,2016,Pages 8-15,ISSN 1877-

0509,https://doi.org/10.1016/j.procs.2016.03.003.

[3] Rudolf Ramler and Klaus Wolfmaier. 2006.

“Economic perspectives in test automation:

balancing automated and manual testing with

opportunity cost”. In Proceedings of the 2006

international workshop on Automation of software

test (AST '06). Association for Computing

Machinery, New York, NY, USA, 85–91. DOI:

https://doi.org/10.1145/1138929.1138946

[4] Mr Tarik Sheth , Ms. Priyanka Bugade , Ms. Sneha,

Pokharkar, Analysis Of Code Coverage Through

Gui Test Automation And Back End Test

Automation, IJISET - International Journal of

Innovative Science, Engineering & Technology,

Vol. 3 Issue 3, March 2016. ISSN 2348 – 7968

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 110

[5] R. Anand, ArulPrakash Ma, Business driven

automation testing framework, March 2018,

International Journal of Engineering & Technology

7(2.8):345, DOI: 10.14419/ijet.v7i2.8.10438

[6] André de Camargo, Ivan Salvadori,Ronaldo dos

Santos Mello, Frank Siqueira, An architecture to

automate performance tests on microservices,

iiWAS '16: Proceedings of the 18th International

Conference on Information Integration and Web-

based Applications and Services November 2016

Pages 422–429 https://doi.org/10.1145/-

3011141.3011179

[7] Neha Bhateja, A Study on Various Software

Automation Testing Tools, International Journal of

Advanced Research in Computer Science and

Software Engineering, Volume 5, Issue 6, June

2015, ISSN: 2277 128X

[8] Li, J...J., Ulrich, A., Bai, X. et al. Advances in test

automation for software with special focus on

artificial intelligence and machine learning.

Software Qual J 28, 245–248 (2020).

https://doi.org/10.1007/s11219-019-09472-3

[9] Contan, C. Dehelean and L. Miclea, "Test

automation pyramid from theory to practice," 2018

IEEE International Conference on Automation,

Quality and Testing, Robotics (AQTR),2018,pp.1-

5,doi: 10.1109/AQTR.2018-.8402699.

[10] Z. Sun, Y. Zhang and Y. Yan, "A Web Testing

Platform Based on Hybrid Automated Testing

Framework," 2019 IEEE 4th Advanced Information

Technology, Electronic and Automation Control

Conference (IAEAC), 2019, pp. 689-692, doi:

10.1109/IAEAC47372.2019.8997684.

[11] M. Iyama, H. Kirinuki, H. Tanno and T.

Kurabayashi, "Automatically Generating Test

Scripts for GUI Testing," 2018 IEEE International

Conference on Software Testing, Verification and

Validation Workshops (ICSTW), 2018, pp. 146-

150, doi: 10.1109/ICSTW.2018.00043.

[12] V. H. Kiranagi and G. K. Shyam, "Feature Driven

Hybrid Test Automation Framework (FDHTAF)

for web based or cloud based application testing,"

2017 International Conference On Smart

Technologies For Smart Nation (SmartTechCon),

2017, pp. 1555-1559, doi:

10.1109/SmartTechCon.2017.8358626.

[13] K. Sneha and G. M. Malle, "Research on software

testing techniques and software automation testing

tools," 2017 International Conference on Energy,

Communication, Data Analytics and Soft

Computing (ICECDS), 2017, pp. 77-81, doi:

10.1109/ICECDS.2017.8389562

