
UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 98

Product Based Search Engine Microservice
Haridher Pandiyan1, S.B. Prapulla2, Paul Sabu Kodiyattil3, Abdulazeem Yazari4 and Siva

Rama Krishna Kondapalli5
1Student, Computer Science and Engineering, RV College of Engineering, Bangalore, India

2Assistant Professor, Computer Science and Engineering, RV College of Engineering, Bangalore, India

 3,4,5Digital Platform Manager, Mast Global, Bangalore, India

Email: 1haridher21@gmail.com, 2prapullasb@rvce.edu.in, 3spaulkodiyat@mast.com, 4ayazari@mast.com and
5skondapalli@mast.com

Abstract — A product search engine is a key element in

the functioning of any e-commerce application. It

indexes products in real time and produces fast results to

queries entered. Currently the solution running on the

organization’s website uses a microservice that passes

the queries entered, to a third-party service provider that

does the indexing and searching. This is a paid service

and hence is to be replaced by the open source search

engine, Apache Solr. In this paper, we explain the

microservice built, using the go-solr package along with

the go-kit microservice framework in developing the

microservice to replace the pre- existing paid service.

Keywords— Faceting, fuzzy search, microservices,

parsers, Solr, SolrCloud.

I. INTRODUCTION

Search engines are the reason the internet is so popular,

that provides relevant results to the user queries within

mil- seconds, searching through millions of records and

returning the best matches. There are different types of

search engines though, based on their use cases, The

most commonly used one is the Google Search which is

a web crawler based search engine, that scours the

internet and indexes new websites and returns the most

appropriate website to the user’s search. But for e-

commerce companies, most of which will be having a

website of their own displaying the products that they

sell and can be bought from this online portal. Here a

product-based search engine will be provided that has

indexed only the product related data and has been

optimized with respect to the same. The most popular or

largest product search engine is that of Amazon, called

the A9. Any search here returns only products that are

available from Amazon.

In a similar fashion, the organization’ website does the

same for the products it sells. Currently it is using the

service of a third-party provider to do the indexing and

searching of the products.

The call to this is available in their microservice named

Keyword Search v6. The new service aims to remake

this service as Keyword Search v97 microservice that

has Apache Solr performing the indexing and searching.

Apache Solr is an open source search engine build off

Lucene which is developed in Java and performs the

optimal searching and indexing processes. Elastic search

is another viable option, but Solr search is more suitable

to the enterprise data use cases.

Section II elaborates some of the ways Solr has been

used, mainly targeting web-based searches. Section III

describes the architecture of the microservice

developed. Section IV discusses the methodology.

Section V details the results of the testing analysis and

Section V1 forms the conclusion.

II. LITERATURE SURVEY

Though Solr has been being used for over 10 years, most

of the papers published focus on using Solr as a web

crawler-based search engine, that deals with indexing

webpages. Enterprise data from an e-commerce website

would deal with products, that would each have

numerous attributes that apply to all, but also attributes

that only apply to it.

Hence a schema can be developed to form a structure to

the data enabling for better storage and retrieval. D. Yi

and W. Youyu [1] tackled such a case by comparing data

from a Shopping website between a regular database

search versus that provided by Solr.

They highlighted Solr’s Vector Space Model (VSM)

that represents documents as vectors allowing for

computing between similarity of terms as degree

between vectors. Similar comparison with structured

data was done by S. Tahiliani and A. Bansal [2] between

Solr search and Hibernate search. They compared

various types of searches such as wildcard search,

faceted search, etc.

Their comparisons pointed which search was better for

each scenario and showed that Solr search would be

better suited for enterprise data for more basic and

faceted searches that are the main type of search on such

online stores.

mailto:1haridher21@gmail.com
mailto:2prapullasb@rvce.edu.in
mailto:3spaulkodiyat@mast.com
mailto:4ayazari@mast.com
mailto:skondapalli@mast.com

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 99

Others used Solr for webpage indexing. H. Ma et al [3]

explored the idea of a using Solr as a vertical search

engine using Apache Nutch as the web crawler, and

having a filtering system that would only extract tourism

based data and index the same in Solr. A. Wang [4]

explored a similar approach but with electronic product

information and more expansions and optimizations on

the web crawler Heritrix. A novel JE segmentation

module was developed so that this would deal with

Chinese character data, opening capabilities for other

languages along a similar system.

L. Ma et al [5] focused on the Mongolian language with

lot of homographs, hence had to transform the encoding

to a common unicode format, Latin being chosen. A

corpus for this and transcoded it with the Latin

characters, Solr then indexed different documents and

transform them with their word association model

trained on the corpus to index them in Latin, and finally

the values entered in the search would get converted into

Latin and searched by Solr. Supun Nakandala and

Sachith Withana [6] applied Solr as a backend database

to store metadata information of various scientific data

collected for better archiving and reuse of collected data.

G. Simonini and S. Zhu [7] focused on a faceted search

to retrieve the best n facets using Bayesian networks and

Solr.

In contrast to Solr, researchers like D.F. Murad et al [8]

utilized elastic search as the search tool in their

application with an emphasis on the keyword matching

ability while others like R. Surendran et al [9] tackled its

usage for a distributed environment of a dynamic grid

computation. Too further explore this idea of elastic

search, a deeper study of its term matching capability

was performed by [10] N. Kumar and A. Pradhan [10]

in their word root finder. Overall based on different use

cases studied, Solr has shown to be a better match for

applications dealing with enterprise data that can be

defined by a schema.

III. SYSTEM ARCHITECTURE

A. Go-Kit Microservice Architecture

Microservices developed using Go language, generally

utilize the Go-kit package. This package contains

various sub- modules that provide HTTP data transfer

support, decoder and encoder options, utilities for

logging and metrics, as well as support for consul that

can be used to provide the service mesh for the

microservices developed. With the support of all these

tools available, a general microservice architecture is

commonly followed. This involves separation into

layers chiefly a transport layer, endpoint layer and

service layer, with additional logging and

instrumentation (for the metrics) as shown in Fig. 1.

The service layer deals with the core business logic that

we wish to provide in our microservice. Typically, it

includes calls to business logic functions stored in an api

file and makes function calls to other microservices via

proxies to use their information as well. For every

service function, there will be an endpoint function that

provides an abstraction mapping the services to the

transport layer, thereby exposing the service methods.

The transport layer then manages the server logic to

expose the endpoints, implement the required decoder

and encoding functions for each service, depending on

HTTP, gRPC or other transport being used.

B. Overall Architecture

The application is part of the microservices that run the

organization’s product website. The different

microservices are developed in Go language, and the

codebase is available across over on Bitbucket, from

where a Joyent Triton container is built. These

containers can communicate with other ser- vices via the

service mesh provided and handled by Hashicorp

Consul. For services that require tools that aren’t

available in Go, separate containers are hosted on

Azure to handle them. As such, in the case of this

implementation of Keyword Search, a SolrCloud

instance is up and running on Azure, that can be hit from

keyword search.

C. Execution Flow

Once the containers and SolrCloud instance is up and

running, and consul agents are active and key value pairs

set for authenticating the connection to the service mesh,

search requests from the client user at the website will

be directed to the search and the Search as you type

(SAYT) endpoints. The server listening on those

endpoints will decode the respective URL requests and

will extract the different key value pairs and form the

Fig 1. Go-Kit Architecture

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 100

search request. From there the service methods will call

the required modules. For the search, this begins with

the construction of the query to be sent to Solr, requiring

the keywords and different filters applied and forming a

logical congregation. After which, the required go-solr

library methods are utilized to create the query instance

object that will be sent to Solr for performing the

required search. The results obtained will be in a nested

Solr response format that will require decoding with the

help of the mapstructure module before being

transformed to the previous Adobe response format.

Finally, calls are made to other services to get certain

other real time product information (available in the

Collection part of the response) such as pricing, and this

final response is then passed onto the service mesh and

be available to the proceeding services and front end.

The SAYT front requires 2 different calls to Solr, one

being a search call itself and the other dealing with the

autocomplete suggestion module, where suggested

words are produced based on the current keyword

entered. The two results are finally merged to form the

Sayt response that’s forwarded to the service mesh. This

entire system flow is presented in Fig 2.

D. Functionalities

The key functionalities provided by the new keyword

service shall include the following:

1) Keyword search: The user can pass any string in the

search bar and will be returned relevant results.

Searches generally are done as full text matches. To

facilitate a higher level of user

experience/satisfaction, Fuzzy search too is

supported thus accounting for misspelt words

passed in the search by the user.

Fig 2. System Flowchart

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 101

2) Phrase search: By this, we mean that higher priority

is given to a specific phrase (ordering of words)

occurring in the searches over ones that just contain

part of the phrase in the searches.

3) Faceted filtering: The product website will have

facets that the user can select in order to narrow

down the searches. Different facet categories with

different options exist, the required logical mapping

of these filters must be held to return the right

results.

4) Faceted results: Once any search is done, or facets

added and a new search done, there is a requirement

to state the number of products of a given facet

category/type amongst the returned results. This

again adds to the user experience.

5) Sort options: Rather than most relevant, users may

want to see the results generally in the order of price

or ratings or for newer products among the

returned results. This same capability will be

provided.

6) Autocomplete: When the user is typing the keyword

that they want to search in the search bar,

suggestions will be provided that are in the form of

wildcard results/autocomplete. How it is displayed,

will be handled by the front end team, but as part of

the keyword search service, they must be passed as

a part of the SAYT response.

IV. METHODOLOGY

The project was development was split up into two

phases to separate out the concerns, allowing for focus

on Solr’s inclusion in the first and implementation into

the former service in the second.

A. Phase 1: Wrapper Service

Solr was first setup with the creation of containers with

appropriate configurations such as shards and

replication factor and studied with the example data and

the sample feed provided from the DataHub team. From

this a field list and type were created to be supplied to

Solr before ingesting the data and allowing automatic

schema design.

A basic application was first built with the core

microservice structure with a status check.

Development was then done to provide a basic

connection to Solr and retrieve example data before

moving onto the sample feed. The decoding of the URL

get requests via Postman was done using the go-kit url

library to extract the fields and supply the request to the

service. Within the service, the creation of the query is

made and then the search to Solr is called before

retrieving the results. The results are in a nested map

interface slice that needs to be mapped to a required

response struct, which is then sent back with the help of

an encoder. The structs are signified with a json

construct, for the response object to be easily read as a

json.

Next steps included, figuring out the facet calls in Solr,

the response object to be decoded and what facets are

needed to be read and produced later, This also added

complexity to the query creation process as the facet

filters require appropriate logical mapping to filter

correctly. Finally, sort option was also included.

This service was still functioning independent and

requires creation of corporate key value(KV) pairs over

on consul to include in the service mesh, but being a

POC, the decision was to directly replace the api logic

in keyword search with that of the wrapper service.

B. Phase 2: Implementation within the original

microservice

As stated above, the changes were pushed onto the main

keyword search service. Required adobe calls were

replaced with Solr. Overall, 2 main services are to be

provided, Search and Sayt. Sayt stands for search as you

type and requires a slightly different request and

response.

The service involves getting the product information

like in search (first call to search/solr is made), getting

certain facets (second call to Solr) and finally the

suggestions slice (third call). This suggestions slice

required a different approach as Solr only provides

records as results and not word suggestions. But using

grouping and the specific field only selector, satisfactory

suggestions were attained. Thus, completing the second

service. Unit testing and benchmark tests were followed

to prove the validity and provide some performance

analysis that is covered in the following section.

IV. ANALYSIS AND RESULTS

The performance analysis was carried out using

benchmark tests. Repeated tests were performed, and

their scores averaged out to produce the following

insights.

A. Analysis of Different Query Parsers

A query parser is the component responsible for parsing

the textual query and converting it into corresponding

Lucene Query objects. It is generally specified via the

defType parameter which stands for default type.

Different query parsers are designed for different use

cases depending on the data stored and the complexity

of the query that will be required of.

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 102

Table 1: Nanoseconds/operation(op) for different parsers

Pass No. Parser Type

Lucene Dismax E Dismax Complex Simple

1 24563145 23833456 26090622 31263145 25334215

2 23940584 23554669 25789137 28017281 25190928

3 24288350 23613452 25336907 28429611 24915621

4 23278211 23700278 25722656 29089310 24732345

Average 24267572.5 23675463.75 25734830.5 29199836.75 25043277.25

Some of the query parsers that were tested are:

1) Lucene: The standard default query parser. The key

benefit of the standard query parser is that it

supports a robust and fairly intuitive syntax

allowing you to create a variety of structured

queries. But on the downside, it’s very intolerant of

syntax errors.

2) Dismax: It’s designed to process simple phrases

(with- out complex syntax) entered by users and to

search for individual terms across several fields

using different weighting based on the significance

of each field. The DisMax query parser supports an

extremely simplified subset of the Lucene

QueryParser syntax and rarely produces error

messages.

3) eDismax: It’s an improved version of the Dismax

parser, supporting the full set of complex queries

that Lucene parser can define, as well some

additional parser specific parameters, hence why

it’s called extended Dismax.

4) Simple: This parser allows a person to type

whatever they want for a query to represent. This

parser will then do its best to interpret what to

search for no matter how poor the composed request

may be.

5) Complex: It permits complex query logic via

potentially performing multiple passes over query

text to parse for any nested logic in phrase queries.

The first pass takes any phrase query content

between quotes and stores for subsequent passes.

The different parsers were tested via the benchmarks and

the following datapoints were obtained as shown in

Table 1. A graph for the same has been plotted as shown

in Fig 1.

Based on the results returned, it is clear that Dismax has

performed the best. But Dismax is optimized to handle

simple queries and does not support complex queries,

which will be the case for the keyword search

application and hence Lucene will be considered better.

The results are actually very consistent with other

studies too returning similar results as eDismax is

slower than Lucene and complex involves multiple

passes.

B. Analysis of Different Number of Filters

Filters refer to the facets applied by the user to narrow

down their search results. Thus, a comparison was done

to check how the added filters would affect the speed of

the overall search. The following tests were performed

using the Standard Lucene parser and the results

obtained in Table 2 and plotted as a graph in Fig 2.

Table 2: Nanoseconds/operation Vs Number of Filters

Pass No. No. of Filters

0 filters 1 filter 2 filters 4 filters

1 31152491 31480012 12951704 11991156

2 31480012 14426219 11040314 10553007

3 28239739 12689602 10754049 9237753

Average 30290747 14165108 11582022 10593972

One would expect the added filters to delay the search

further as more checks will have to be done, but due to

in built optimizations in Lucene’s implementation, all

comparisons are made in a single pass with very little

difference and hence the time comes more down to the

number of records that were hit as a match and returned.

Thus, with more filters, lesser hits will be made and this

the decrease in the response time.

Fig 3. Plot of Analysis of Different Query Parsers

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 103

 C. Analysis of Different Number of Different Fuzzy

Levels

Fuzzy search was also added. To have Solr perform it,

a simple “~” followed by a number specifying the order

of fuzzy search is added to the q parameter of the query.

Though with phrase searches, this refers to the slope

parameter which checks the distance between words in

a phrase. So, a comparison was done between the direct

full text match and other fuzzy levels, and wildcard

search. The following results were obtained as shown in

Table 3. A graph was plotted using the same as shown

in Fig 3.

Table 3: Nanoseconds/operation Vs Fuzzy Levels

Pass No. Fuzzy Levels

Level 0 Level 1 Level 2 Level 4

1 21843327 26824816 31152491 26824816

2 24875931 29085295 31480012 35912582

3 22103520 27363918 28239739 29550603

Average 22940926 27758009 30290747 30768226

Based on the graph, it is clear that with increase in fuzzy

levels, more words and hence records will be matched,

this leading to an increase in the response time. But the

line tends to flatten out beyond a point. This is owing to

the fact that beyond a certain degree, all permutations

and swapped combinations have already been matched

and no more will be caught on increasing the degree.

Thus, the results may vary depending on the word

searched. But Fuzzy level 2 is finally chosen for any

search, allowing the user to enter spelling mistakes and

still find the results adds to the user experience. Finally,

not mentioned on the graph, but wildcard search did also

perform well, roughly the same as fuzzy level 2, but it

doesn’t apply well to our application and hence not

considered.

VI. CONCLUSION

Thus, the new microservice developed performs a

slightly better search service than the former service. It

has taken into account some of the missing capabilities

of the current Adobe search and provided them via Solr.

Being open source, there is quite the cost cutdown, as

well as more control over the search, allowing for a

deeper development for future search optimization and

modification/addition of existing services. Solr has

served as an ideal search engine for this enterprise use

case, providing all the required functions, and many

more to be included. The Go-Solr interface by

developed by vang822 provides a sufficient interface to

talk to Solr using Go, with all its functionalities. Overall,

with proper development and review, this microservice

should be bound to replace the former service soon.

Performance analysis was carried out using benchmark

tests. Repeated tests were performed, and their scores

averaged out to produce the following insights.

REFERENCES

[1] D. Yi and W. Youyu, Shopping Website Search

System Based on Solr, 2019 11th International

Conference on Measuring Technology and

Mechatronics Automation (ICMTMA), Qiqihar,

China, 2019, pp. 708- 711, doi:

10.1109/ICMTMA.2019.00162.

[2] S. Tahiliani and A. Bansal, Comparative Analysis

on Big Data Tools: Apache Solr Search and

Hibernate Search, 2018 3rd IEEE International

Conference on Recent Trends in Electronics,

Information Communication Technology

(RTEICT), Bangalore, India, 2018, pp. 164-170,

doi: 10.1109/RTEICT42901.2018.9012331.

[3] H. Ma, W. Du, S. Xu and W. Li, Searching Tourism

Information by Using Vertical Search Engine Based

on Nutch and Solr, 2019 IEEE 17th International

Conference on Software Engineering Research,

Management and Applications (SERA), Honolulu,

HI, USA, 2019, pp. 128-132, doi:

10.1109/SERA.2019.8886775.

[4] A. Wang, Design and Implementation of Vertical

Search Platform for Electronic Product

Information, 2017 International Conference on

Robots Intelligent System (ICRIS), Huai’an, 2017,

pp. 101-104, doi: 10.1109/ICRIS.2017.32.

Fig 4. Plot of Analysis of Different Number of Filters

Fig 3. Plot of Analysis of Different Fuzzy Levels

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 08, 2021

All rights are reserved by UIJRT.COM. 104

[5] L. Ma, W. Bao, W. Bao, W. Yuan, T. Huang and

X. Zhao, A Mongolian Information Retrieval

System Based on Solr, 2017 9th International

Conference on Measuring Technology and

Mechatronics Automation (ICMTMA), Changsha,

China, 2017, pp. 335-338, doi:

10.1109/ICMTMA.2017.0087.

[6] S. Nakandala et al., Schema-independent scientific

data cataloging framework, 2015 Moratuwa

Engineering Research Conference (MER- Con),

Moratuwa, Sri Lanka, 2015, pp. 289-294, doi:

10.1109/MER- Con.2015.7112361.

[7] G. Simonini and S. Zhu, Big data exploration with

faceted browsing, 2015 International Conference on

High Performance Computing Simulation (HPCS),

Amsterdam, Netherlands, 2015, pp. 541-544, doi:

10.1109/HPC- Sim.2015.7237087.

[8] D. F. Murad, T. Darwis, M. Z. Achsani and F. C.

Utami, "Elasticsearch Analyzer In Broad Match

Advertising System," 2018 International Seminar

on Research of Information Technology and

Intelligent Systems (ISRITI), 2018, pp. 415-420,

doi: 10.1109/ISRITI.2018.8864308.

[9] R. Surendran and B. P. Varthini, "Integration based

large scale broker's resource management on

friendly shopping application in Dynamic Grid

computing," 2012 Fourth International Conference

on Advanced Computing (ICoAC), 2012, pp. 1-6,

doi: 10.1109/ICoAC.2012.6416830.

[10] N. Kumar and A. Pradhan, "Personalized Terms

Derivative: Semi-supervised Word Root Finder,"

2016 International Conference on Information

Technology (ICIT), 2016, pp. 260-264, doi:

10.1109/ICIT.2016.059.G. Eason, B. Noble, and I.

N. Sneddon, “On certain integrals of Lipschitz-

Hankel type involving products of Bessel

functions,” Phil. Trans. Roy. Soc. London, vol.

A247, pp. 529–551, April 1955.

