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Abstract— Diabolo is a popular game in which the 

object can be spun at up to speeds of 5000 rpm. This 

high spin velocity gives the diabolo the necessary 

angular momentum to remain stable. The shape of the 

diabolo generates an interesting air flow pattern. The 

viscous air applies a resistive torque on the fast spinning 

diabolo. Through computational fluid dynamics (CFD) 

simulations it’s shown that the resistive torque has an 

interesting dependence on the angular speed of the 

diabolo. Further, the geometric shape of the diabolo 

affects the dependence of torque on angular speed. 
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1. INTRODUCTION 

The aerodynamics around spinning objects has long 

been studied using CFD and experimental techniques 

due to its complexity and a lack of an-alytical solution 

for the turbulent nature of flows involved. Objects of 

particular interest include cylinders [1] and spheres [2] 

[3] [4]. Improved understanding of the aerodynamics of 

spinning and moving spherical objects lends to better 

de¬sign of sports objects such as cricket balls [5], golf 

balls [6], [7], [8], and soccer balls [9], [10], [11], and 

[12]. For example, it’s long been known that the dimpled 

surface of a golf ball [7] [8] will disrupt laminar flow 

around the golf ball and cause the onset of turbulent flow 

to happen near the leading edge of the golf ball. Such 

early onset of turbulent air flow significantly reduces the 

air resistance so the golf ball can fly further. 

 

A traditional East Asian past time involves spinning a 

diabolo on a thin thread while the person performs many 

challenging movements. The aerodynamics aspect of a 

spinning diabolo has not been paid much tension in the 

past. In this work, we present a set of preliminary results 

concerning the aerodynamics of a spinning diabolo and 

the relationship between the spin angu¬lar velocity of 

the diabolo and the torque applied on the diabolo due to 

air resistance. 

2. SIMULATION SETUP 

The aerodynamics of a spinning diabolo is simu-lated 

using the open source CFD software Open-FOAM [13] 

[14] [15]. We have previously imple-mented a solver 

[16] based on finite difference methods which suffered 

from the problem that the grid resolution is insufficient 

to resolve the boundary layer behavior near the solid 

walls of the diabolo. 

OpenFOAM is a popular open source CFD package that 

supports a finite volume [13] ap-proach to aerodynamics 

simulation. In addition, the finite volume of the mesh 

[17] is adaptive and can be refined near the walls of the 

diabolo to capture the details of the flow field near the 

wall, where large gradient of the flow field vari¬ables is 

present. 

To set up the simulation, we first create a ge-ometry of 

the diabolo using blender (open source CAD software) 

[18]. Then a finite volume mesh with refinement zone 

near the diabolo is created to be used in the OpenFOAM 

solver. 

2.1 Geometry of a Diabolo 

We used the measurements of a Mister Babache [19] 

diabolo along with a reference image of a Flight Lander 

diabolo to create a diabolo geom¬etry in blender as 

shown in figure 1. 

 

Figure 1: Geometry of the diabolo used in simu-

lation: length 14.07 cm, inner diameter 10.58 cm, 

outer diameter: 11.53 cm, narrow section diam¬eter: 

0.95cm 

2.1 Meshing 

As shown in figure 2, a refined boundary layer is formed 

around the wall of the diabolo. Then a refined mesh in 

the shape of a cylinder surrounds the diabolo. The radius 

of this refined mesh is about 10 cm. The resolution of 

the mesh beyond the cylindrical refinement zone is 

lower. 

On the sectional view of the mesh, the largest cells have 

a resolution of 6.45 ∗ 10-3 x 1.85 ∗ 10-2 in meters. Each 

refinement level increases the resolution by a scale of 2. 

Near the diabolo, the resolution becomes 3.23 ∗ 10-3 x 
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9.23 ∗ 10-2 meter. Finally, the boundary layer mesh has 

a highest resolution of 1.62 ∗ 10-3 x 4.61 ∗ 10-2 meter. 

Overall the mesh used in the simulation for base diabolo 

geometry has 127313 cells. 

 

Figure 2: Meshing of the diabolo: the resolu¬tion of the mesh increases near the wall of the diabolo, including the 

refined boundary layer on the diabolo 

2.3 Solver 

OpenFOAM SIMPLE solver uses a finite volume [13] 

approach to solve the steady-state incom-pressible 

viscous fluid flow [14] [15]. This is a suitable algorithm 

for the diabolo simulation as we are looking for a flow 

field solution when the angular speed of the diabolo 

becomes relatively steady. The governing equations of 

the incompressible viscous fluids are the typical in-

compressible steady Navier-Stokes equations: 

∇�⃑�=0…………..(1) 

∇ • ( �⃑� ⊗ �⃑�) = -∇p + ∇ (𝜈 ∇�⃑�)……………..(2) 

In the SIMPLE algorithm, the pressure velocity coupled 

equation is solved by decoupling the pressure and 

momentum fields through predictor-corrector steps. 

During the momentum predictor step, H matrix is solved 

from the momentum equation which has been 

matrixized on the finite volume mesh. 

 

∇ • ( �⃑� ⊗ �⃑�) - ∇ (𝜈 ∇�⃑�)= -∇p…………(3) 

MV = -∇P……….(4) 

A = diag (M)……….(5) 

H = AV – MV………..(6) 

AV - H = -∇P…………(7) 

 

Now we can start the iterative process solving for 

pressure P and velocity V. Start with the momentum 

equation. 

V = A-1 H - A-1 ∇P…………………………… (8) 

Substituting the V equation into continuity equation 

leads to a Poisson equation of pressure that can be solved 

by under relaxation method. 

∇V = ∇ (A-1 H - A-1 ∇P )= 0………………….(9) 

∇ (A-1 ∇P) = ∇ (A-1 H)………………………(10) 

In the predictor step, the momentum equation is solved 

using initial pressure P and velocity boundary condition 

to find velocity V 

MV = -∇P…………………………………...(11) 

 

The velocity field V is then used in the Poisson 

equation to solve pressure P 

∇ (A-1 ∇P) = ∇ (A-1 H) (12) 

The pressure field is then used in equation ( 8) to correct 

V at the boundary. This is the corrector step. This 

process is iterated until a solution of V and P converges 

for the computational domain. In this particular 

simulation, the k—e [20] turbulence mode is enabled. 

The Reynolds number 𝑅𝑒 = 𝑢𝐿/𝜈 for a spinning diabolo 

at hundreds of rad/s together with the geometry we used 

far exceeds the laminar regime of air flow.  

2.4 Flow pattern 

The contour plots in figure 3 show pressure, speed, and 

vorticity when the diabolo spins at ω = 600 rad/s. We 

clearly observe the presence of vortex shedding with its 

signature wavy pat¬tern. As the angular velocity 

increases, the mag¬nitude of pressure change from 

reference pres¬sure, air speed, vorticity and wall shear 

stress all increase. The high pressure regions at the top 

and bottom of the computational domain are artifacts of 

the simulation where the mesh cells between the rotating 

refinement mesh and outer boundary of the 

computational domain rotate relative to the refinement 

geometry. This arti¬fact can be more readily seen by 

examining the z-component of velocity which are 

opposite in sign above and below the diabolo. Further, 

the distance between origin (center of the diabolo) and 

the inner boundary of the high speed region above or 

below is exactly the radius of the cylin¬drical 

refinement mesh. The flow field beyond the refinement 

mesh is not analyzed due to the artificial nature of the 

result from OpenFOAM in this region. 
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Figure 3: Air pressure (top left), speed (top right), close up speed near the wall of the diabolo (bottom left), and 

vorticity (bottom right) at ω = 600 rad/s. 

 

2.5 Torque 

 
 

Figure 4: Torque on the base length diabolo model 

over varying angular velocities. As the angular 

velocity increases from 0 to 600 rad/s, torque 

increases from 0 to 0.007 Nm. 

2.6 Ln Torque vs. Ln Omega 

 
 

Figure 5: A log scale graph of the Torque vs 𝝎 data is 

shown here. Using the relationship found by the 

trendline, an equation can be created relating 

Angular Velocity and Torque. 𝝉 = 𝟐. 𝟓 ∙ 𝟏𝟎−𝟕 ∙ 𝝎𝟏.𝟔 . 



101 

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 11, 2021 | ISSN: 2582-6832  

 

 
All rights are reserved by UIJRT.COM.    

As the diabolo is spinning, air friction applies a resistive 

torque on the diabolo due to wall shear stress. As time 

passes, the torque exerted on the diabolo stabilizes and 

converges on a value from the elliptic solver in 

OpenFOAM, allowing us to record the torque for any 

given angular velocity. We simulated the diabolo 

rotating along its lengthwise axis between 30 rad/s and 

600 rad/s with an interval of 30 rad/s between data 

points. Figure 4 shows how the torque calculated along 

this axis varies as a function of angular velocity w based 

on the measured values shown in table 1. The smooth 

pattern of the curve suggests a power law relationship. 

By applying logarithmic functions of the torque and 

angular velocity values, we can produce the relationship 

ln(𝜏) = 𝑏 ∙ ln(𝜔) + 𝑎. This further leads to the 

following relationship 

𝜏 = 𝛼𝜔𝛽…………………….. (13) 

As shown figure 6, this equation correctly models the 

torque found through OpenFOAM simulation with high 

correlation. For the base diabolo geometry, the two 

coefficients through regression are 𝛼 = 2.5 ∙ 10−7and 

𝛽 = 1.6. We first use a base diablo geometry 

configuration to examine the torque-angular velocity 

relationship. In the next section, the geometry of the 

diabolo is varied and the effect of geometry on the 

torque-angular velocity is further investigated. 

3. EFFECT OF GEOMETRY ON AERODY-

NAMICS 

After establishing the power law relationship between 

torque and angular velocity, we now modify the base 

geometry of the diabolo by scaling the diabolo model. 

Diabolos with varying lengths are created by scaling the 

diabolo along its lengthwise axis, while keeping the 

radius of the diabolo the same. The length scales are 

shown in table 2. We can then use these geometries to 

examine the effect of length on the torque-angular 

velocity relationship. 

Table 1: Torque calculated from wall shear stress in 

OpenFOAM as a function of the diabolo’s spin 

angular velocity. 

w (rad/s) T (N m) 

30 5.42E-05 

60 1.66E-04 

90 3.22E-04 

120 5.17E-04 

150 7.41E-04 

180 9.89E-04 

210 1.26E-03 

240 1.55E-03 

270 1.87E-03 

300 2.20E-03 

360 2.91E-03 

390 3.29E-03 

420 3.69E-03 

450 4.12E-03 

480 4.60E-03 

510 5.10E-03 

540 5.63E-03 

570 6.20E-03 

600 6.79E-03 

 

Similarly, diabolos of varying radii are created by 

scaling the diabolo radially, while keeping the length of 

the diabolo constant. The outer radius, inner radius, and 

narrow section of the diabolo are updated. The radius 

scales are shown in table 3. These geometries are used 

to examine the effect of radius on the torque-angular 

veloc¬ity relationship. 

Torque Prediction 

 

Figure 6: The simulated torque found in Open-

FOAM and the predicted torque created by our 

equation match well. 

 

 
 

Figure 7: Torque as a function of angular ve¬locity 

for varying diabolo lengths. 

3.1 Effect of length 

As shown in figure 7, increasing the length of the 

diabolo increases the torque exerted on it. The relation 

between torque and angular velocity re-mains the same 

(Τ=ΑΠ^Β) however the values of α and β vary with 

different diabolo lengths. The value of alpha increases 

linearly with diabolo length as shown in table 2, giving 

us the following relationship on α. 

Table 2: 𝜶 and β as a function of varying length scale 
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from the base diabolo geometry. 𝜶 increases due to 

increased contact surface area. β stays around 1.6 for 

all lengths suggesting length has no effect on β. 

Length scale is the ratio between varied lengths 

against base diabolo length. 

Length Scale 

(dimensionless) 
 𝛼  (N 

m) 

β 

(dimensionless) 0.25 1.38E-

07 

1.613 

0.5 1.95E-

07 

1.580 

0.75 2.11E-

07 

1.592 

1 2.41E-

07 

1.600 

1.25 2.47E-

07 

1.606 

1.5 2.62E-

07 

1.623 

1.75 2.80E-

07 

1.633 

2 3.14E-

07 

1.628 

 

Table 3: α and β as a function varying radius from 

the base diabolo geometry. Both variables increase 

with radius scale. Radius scale is the ratio between 

varied radii against base diabolo radius. 

Radius Scale 

(dimensionless) 
 𝛼  (N 

m) 

β 

(dimensionless) 0.25 2.82E-

09 

1.529 

0.5 2.17E-

08 

1.584 

0.75 8.17E-

08 

1.596 

1 2.41E-

07 

1.599 

1.25 4.67E-

07 

1.618 

1.5 8.04E-

07 

1.658 

1.75 1.45E-

06 

1.665 

2 2.21E-

06 

1.703 

 

𝛼 = 8.64 ∙ 10−8∙𝐿 + 1.39 ∙ 10−7
 (14) 

The value of β  stays around 1.6 as shown in table 2. 

There is no strong correlation between β and length 

which suggests that β remains constant at about 1.6 for 

all lengths. 

Furthermore, a relationship between torque and length 

can be derived when 𝜔 is held constant. The torque 

exerted on the diabolo increases linearly with diabolo 

length when angular velocity is 600 rad/s with relation 

𝜏 = 3.97 ∙ 10−3 ∙ 𝐿 + 3 ∙ 10−3 

 

A similar linear relationship for other angular velocities 

exists between length L and torque τ. The torque on the 

diabolo can be expressed more generally as 

𝜏 = 𝑎(𝜔) ∙ 𝐿 + 𝑏(𝜔) (15) 

where 𝑎(𝜔) and 𝑏(𝜔) are regressed against 𝜔 to 

produce the following equations 

𝑎 = 9.21 ∙ 10−8 ∙ 𝜔1.66
 (16) 

 

𝑏 = 1.37 ∙ 10−7 ∙ 𝜔1.55  (17) 

3.2 Effect of radius 

Torque vs Angular Velocity 

 

 

Figure 8: Torque as a function of angular velocity for 

varying radii. 

 

As shown in figure 8, increasing the radius of the 

diabolo increases the torque exerted as expected. The 

general relation between torque and angular velocity 

remains the same 𝜏 = 𝛼𝜛𝛽 

The value for 𝛼 increases as radius increases as shown 

in table 3 yielding the equation after regression 

𝛼 = 2.27 ∙ 10−7 ∙ 𝑟3.23
 (18) 

The value for β increases linearly with radius as shown 

in table 3, giving 

𝛽 = 0.0869𝑟 + 1.52 (19) 

A similar relation can be derived between torque and 

radius when 𝜔 is held constant. The torque exerted on 

the diabolo when the angular velocity is held at 600 rad/s 

increases with radius, creating a smooth curve with 

relation 𝜏 = 7.60 ∙ 10−3 ∙ 𝑟3.72
 

 

We see this same smooth curve for every other angular 

velocity. The torque dependence on radius r can then be 

expressed more generally as 

𝜏 = 𝑎(𝜔) ∙ 𝑟𝑏(𝜔) (20) 

where 𝑎(𝜔) is regressed against w to produce 

𝑎 = 3.38 ∙ 10−7 ∙ 𝜔1.56 (21) 

𝑏(𝜔) increases from 3.46 to 3.72 as 𝜔 increases from 30 

rad/s to 600 rad/s with a correlation of 0.793 from linear 

regression. 

4. CONCLUSION AND FUTURE WORK 

By varying the angular speed of the base diabolo 

geometry, we have observed a power law relationship 

between torque and angular velocity 𝜏 = 𝛼𝜛𝛽. By 

further examining the dependence of torque on the shape 

of the diabolo, we can conclude that both coefficients 

are functions of the geometry of the diabolo. 



103 

UIJRT | United International Journal for Research & Technology | Volume 02, Issue 11, 2021 | ISSN: 2582-6832  

 

 
All rights are reserved by UIJRT.COM.    

The diabolo used in our simulation has a smooth wall 

which could perform better if we used a dimpled surface 

to reduce air resistance. We are not aware of any 

diabolos made of a dimpled surface. It’ll be interesting 

to further investigate the effect of dimpled wall on the 

aerodynamics of diabolo. 

One critical element missing from this work is 

experimental validation of the dependence found from 

CFD simulation. We suggest setting up experiments to 

verify if the predicted torque- angular velocity 

relationship agrees with observation. One approach is to 

measure the mechanical power required to sustain a 

constant angular speed described by equation 22. 

𝑃 = 𝜏𝜔 = 𝛼𝜔𝛽 ∙ 𝛽 = 𝛼𝜔𝛽+1
 (22) 

 

By measuring the power of the motor needed to sustain 

the diabolo at varying angular velocity, we can then 

verify if the coefficients α and β agree with CFD 

simulation. 

A second approach is to measure the angular 

deceleration of the diabolo as a result of the viscous 

torque from air in the spinning diabolo. The measured 

deceleration and the rotational inertia of the diabolo 

yields measured torque which then can be compared 

with predicted 𝜏 − 𝜔 relationship. 

𝜏 = 𝐼
𝑑𝜔

𝑑𝑡
= −𝛼𝑤𝛽                                  

𝑑𝜔

𝑑𝑡
= −

𝛼

𝐼
𝜔𝛽                                        

𝜔(𝑡) = ((𝛽 − 1)
𝛼

𝐼
𝑡)

1
1−𝛽

          (23) 

 

By measuring how the ω of a spinning diabolo slows 

down and comparing with equation 23, we can 

experimentally determine α and β then compare with the 

simulated result from OpenFOAM. 

 

It would be interesting to set up the above experiments 

using spinning diabolos to measure the dependence of 

torque on angular velocity and compare it with the result 

simulated from Open-FOAM. The comparison will help 

us better un-derstand the strengths and weaknesses of 

Open-FOAM’s result in this study. 
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